IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v86y2017i3d10.1007_s11134-017-9520-7.html
   My bibliography  Save this article

Networks of $$\cdot /G/\infty $$ · / G / ∞ queues with shot-noise-driven arrival intensities

Author

Listed:
  • D. T. Koops

    (University of Amsterdam)

  • O. J. Boxma

    (Eindhoven University of Technology)

  • M. R. H. Mandjes

    (University of Amsterdam)

Abstract

We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by a shot-noise process. A shot-noise rate emerges naturally in cases where the arrival rate tends to exhibit sudden increases (or shots) at random epochs, after which the rate is inclined to revert to lower values. Exponential decay of the shot noise is assumed, so that the queueing systems are amenable to analysis. In particular, we perform transient analysis on the number of jobs in the queue jointly with the value of the driving shot-noise process. Additionally, we derive heavy-traffic asymptotics for the number of jobs in the system by using a linear scaling of the shot intensity. First we focus on a one-dimensional setting in which there is a single infinite-server queue, which we then extend to a network setting.

Suggested Citation

  • D. T. Koops & O. J. Boxma & M. R. H. Mandjes, 2017. "Networks of $$\cdot /G/\infty $$ · / G / ∞ queues with shot-noise-driven arrival intensities," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 301-325, August.
  • Handle: RePEc:spr:queues:v:86:y:2017:i:3:d:10.1007_s11134-017-9520-7
    DOI: 10.1007/s11134-017-9520-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-017-9520-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-017-9520-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Anderson & J. Blom & M. Mandjes & H. Thorsdottir & K. Turck, 2016. "A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 153-168, March.
    2. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    3. Centanni, Silvia & Minozzo, Marco, 2006. "A Monte Carlo Approach to Filtering for a Class of Marked Doubly Stochastic Poisson Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1582-1597, December.
    4. Song-Hee Kim & Ward Whitt, 2014. "Are Call Center and Hospital Arrivals Well Modeled by Nonhomogeneous Poisson Processes?," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 464-480, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axel Finke & Adam Johansen & Dario Spanò, 2014. "Static-parameter estimation in piecewise deterministic processes using particle Gibbs samplers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 577-609, June.
    2. Yiran Liu & Harsha Honnappa & Samy Tindel & Nung Kwan Yip, 2021. "Infinite server queues in a random fast oscillatory environment," Queueing Systems: Theory and Applications, Springer, vol. 98(1), pages 145-179, June.
    3. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    4. Marco Minozzo & Silvia Centanni, 2012. "Monte Carlo likelihood inference for marked doubly stochastic Poisson processes with intensity driven by marked point processes," Working Papers 11/2012, University of Verona, Department of Economics.
    5. Barsotti, Flavia & Milhaud, Xavier & Salhi, Yahia, 2016. "Lapse risk in life insurance: Correlation and contagion effects among policyholders’ behaviors," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 317-331.
    6. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    7. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    8. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    9. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    10. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    11. Shan Wang & Nan Liu & Guohua Wan, 2020. "Managing Appointment-Based Services in the Presence of Walk-in Customers," Management Science, INFORMS, vol. 66(2), pages 667-686, February.
    12. Amir Rastpour & Armann Ingolfsson & Bora Kolfal, 2020. "Modeling Yellow and Red Alert Durations for Ambulance Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1972-1991, August.
    13. Dimitrova, Dimitrina S. & Ignatov, Zvetan G. & Kaishev, Vladimir K. & Tan, Senren, 2020. "On double-boundary non-crossing probability for a class of compound processes with applications," European Journal of Operational Research, Elsevier, vol. 282(2), pages 602-613.
    14. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    15. Liu, Wenyue & Cadenillas, Abel, 2023. "Optimal insurance contracts for a shot-noise Cox claim process and persistent insured's actions," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 69-93.
    16. Swishchuk, Anatoliy & Zagst, Rudi & Zeller, Gabriela, 2021. "Hawkes processes in insurance: Risk model, application to empirical data and optimal investment," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 107-124.
    17. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    18. Hideaki Takagi & Yuta Kanai & Kazuo Misue, 2017. "Queueing network model for obstetric patient flow in a hospital," Health Care Management Science, Springer, vol. 20(3), pages 433-451, September.
    19. Mustafa Y. Sir & David Nestler & Thomas Hellmich & Devashish Das & Michael J. Laughlin & Michon C. Dohlman & Kalyan Pasupathy, 2017. "Optimization of Multidisciplinary Staffing Improves Patient Experiences at the Mayo Clinic," Interfaces, INFORMS, vol. 47(5), pages 425-441, October.
    20. Fernández-Alcalá, R.M. & Navarro-Moreno, J. & Ruiz-Molina, J.C., 2009. "Statistical inference for doubly stochastic multichannel Poisson processes: A PCA approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4322-4331, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:86:y:2017:i:3:d:10.1007_s11134-017-9520-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.