IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v18y2016i1d10.1007_s11009-014-9405-8.html
   My bibliography  Save this article

A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue

Author

Listed:
  • D. Anderson

    (University of Wisconsin – Madison)

  • J. Blom

    (CWI)

  • M. Mandjes

    (University of Amsterdam
    CWI)

  • H. Thorsdottir

    (University of Amsterdam
    CWI)

  • K. Turck

    (Ghent University)

Abstract

We consider a model in which the production of new molecules in a chemical reaction network occurs in a seemingly stochastic fashion, and can be modeled as a Poisson process with a varying arrival rate: the rate is λ i when an external Markov process J(⋅) is in state i. It is assumed that molecules decay after an exponential time with mean μ −1. The goal of this work is to analyze the distributional properties of the number of molecules in the system, under a specific time-scaling. In this scaling, the background process is sped up by a factor N α , for some α>0, whereas the arrival rates become N λ i , for N large. The main result of this paper is a functional central limit theorem (F-CLT) for the number of molecules, in that, after centering and scaling, it converges to an Ornstein-Uhlenbeck process. An interesting dichotomy is observed: (i) if α > 1 the background process jumps faster than the arrival process, and consequently the arrival process behaves essentially as a (homogeneous) Poisson process, so that the scaling in the F-CLT is the usual N $\sqrt {N}$ , whereas (ii) for α≤1 the background process is relatively slow, and the scaling in the F-CLT is N 1−α/2. In the latter regime, the parameters of the limiting Ornstein-Uhlenbeck process contain the deviation matrix associated with the background process J(⋅).

Suggested Citation

  • D. Anderson & J. Blom & M. Mandjes & H. Thorsdottir & K. Turck, 2016. "A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 153-168, March.
  • Handle: RePEc:spr:metcap:v:18:y:2016:i:1:d:10.1007_s11009-014-9405-8
    DOI: 10.1007/s11009-014-9405-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-014-9405-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-014-9405-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arazi, Arnon & Ben-Jacob, Eshel & Yechiali, Uri, 2004. "Bridging genetic networks and queueing theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 585-616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiran Liu & Harsha Honnappa & Samy Tindel & Nung Kwan Yip, 2021. "Infinite server queues in a random fast oscillatory environment," Queueing Systems: Theory and Applications, Springer, vol. 98(1), pages 145-179, June.
    2. G. A. Delsing & M. R. H. Mandjes & P. J. C. Spreij & E. M. M. Winands, 2020. "Asymptotics and Approximations of Ruin Probabilities for Multivariate Risk Processes in a Markovian Environment," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 927-948, September.
    3. Kaj, Ingemar & Tahir, Daniah, 2019. "Stochastic equations and limit results for some two-type branching models," Statistics & Probability Letters, Elsevier, vol. 150(C), pages 35-46.
    4. Pang, Guodong & Zhou, Yuhang, 2018. "Functional limit theorems for a new class of non-stationary shot noise processes," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 505-544.
    5. Ioannis Dimitriou, 2022. "Stationary analysis of certain Markov-modulated reflected random walks in the quarter plane," Annals of Operations Research, Springer, vol. 310(2), pages 355-387, March.
    6. Hongyuan Lu & Guodong Pang & Michel Mandjes, 2016. "A functional central limit theorem for Markov additive arrival processes and its applications to queueing systems," Queueing Systems: Theory and Applications, Springer, vol. 84(3), pages 381-406, December.
    7. Dieter Fiems, 2022. "Retrial queues with generally distributed retrial times," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 189-191, April.
    8. Sen, Ankita & Selvaraju, N., 2023. "Diffusion approximation of an infinite-server queue under Markovian environment with rapid switching," Statistics & Probability Letters, Elsevier, vol. 195(C).
    9. Michel Mandjes & Birgit Sollie, 2022. "A Numerical Approach for Evaluating the Time-Dependent Distribution of a Quasi Birth-Death Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1693-1715, September.
    10. Ayane Nakamura & Tuan Phung-Duc, 2023. "A Moment Approach for a Conditional Central Limit Theorem of Infinite-Server Queue: A Case of M/M X / ∞ Queue," Mathematics, MDPI, vol. 11(9), pages 1-20, April.
    11. D. T. Koops & O. J. Boxma & M. R. H. Mandjes, 2017. "Networks of $$\cdot /G/\infty $$ · / G / ∞ queues with shot-noise-driven arrival intensities," Queueing Systems: Theory and Applications, Springer, vol. 86(3), pages 301-325, August.
    12. Pang, Guodong & Zheng, Yi, 2017. "On the functional and local limit theorems for Markov modulated compound Poisson processes," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 131-140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Addabbo, Tommaso & Kocarev, Ljupco, 2009. "Periodic dynamics in queuing networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2178-2192.
    2. Arnon Arazi & Eshel Ben-Jacob & Uri Yechiali, 2005. "Controlling an oscillating Jackson-type network having state-dependent service rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 62(3), pages 453-466, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:18:y:2016:i:1:d:10.1007_s11009-014-9405-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.