IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v85y2017i1d10.1007_s11134-016-9504-z.html
   My bibliography  Save this article

Stability of a two-queue cyclic polling system with BMAPs under gated service and state-dependent time-limited service disciplines

Author

Listed:
  • Jianyu Cao

    (Shenzhen University)

  • Weixin Xie

    (Shenzhen University)

Abstract

The stability of a cyclic polling system, with a single server and two infinite-buffer queues, is considered. Customers arrive at the two queues according to independent batch Markovian arrival processes. The first queue is served according to the gated service discipline, and the second queue is served according to a state-dependent time-limited service discipline with the preemptive repeat-different property. The state dependence is that, during each cycle, the predetermined limited time of the server’s visit to the second queue depends on the queue length of the first queue at the instant when the server last departed from the first queue. The mean of the predetermined limited time for the second queue either decreases or remains the same as the queue length of the first queue increases. Due to the two service disciplines, the customers in the first queue have higher service priority than the ones in the second queue, and the service fairness of the customers with different service priority levels is also considered. In addition, the switchover times for the server traveling between the two queues are considered, and their means are both positive as well as finite. First, based on two embedded Markov chains at the cycle beginning instants, the sufficient and necessary condition for the stability of the cyclic polling system is obtained. Then, the calculation methods for the variables related to the stability condition are given. Finally, the influence of some parameters on the stability condition of the cyclic polling system is analyzed. The results are useful for engineers not only checking whether the given cyclic polling system is stable, but also adjusting some parameters to make the system satisfy some requirements under the condition that the system is stable.

Suggested Citation

  • Jianyu Cao & Weixin Xie, 2017. "Stability of a two-queue cyclic polling system with BMAPs under gated service and state-dependent time-limited service disciplines," Queueing Systems: Theory and Applications, Springer, vol. 85(1), pages 117-147, February.
  • Handle: RePEc:spr:queues:v:85:y:2017:i:1:d:10.1007_s11134-016-9504-z
    DOI: 10.1007/s11134-016-9504-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-016-9504-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-016-9504-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gibson, Diana & Seneta, E., 1987. "Monotone infinite stochastic matrices and their augmented truncations," Stochastic Processes and their Applications, Elsevier, vol. 24(2), pages 287-292, May.
    2. Saffer, Zsolt & Telek, Miklós, 2009. "Stability of periodic polling system with BMAP arrivals," European Journal of Operational Research, Elsevier, vol. 197(1), pages 188-195, August.
    3. Winfried K. Grassmann & Michael I. Taksar & Daniel P. Heyman, 1985. "Regenerative Analysis and Steady State Distributions for Markov Chains," Operations Research, INFORMS, vol. 33(5), pages 1107-1116, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jewgeni H. Dshalalow & Ahmed Merie & Ryan T. White, 2020. "Fluctuation Analysis in Parallel Queues with Hysteretic Control," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 295-327, March.
    2. Jewgeni H. Dshalalow & Ahmed Merie, 2018. "Fluctuation analysis in queues with several operational modes and priority customers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 309-333, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiqiang Q. Zhao & W. John Braun & Wei Li, 1999. "Northwest corner and banded matrix approximations to a Markov chain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(2), pages 187-197, March.
    2. Braunsteins, Peter & Decrouez, Geoffrey & Hautphenne, Sophie, 2019. "A pathwise approach to the extinction of branching processes with countably many types," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 713-739.
    3. Abhijit Datta Banik & Souvik Ghosh & M. L. Chaudhry, 2020. "On the optimal control of loss probability and profit in a GI/C-BMSP/1/N queueing system," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 144-162, March.
    4. Pala, Ali & Zhuang, Jun, 2018. "Security screening queues with impatient applicants: A new model with a case study," European Journal of Operational Research, Elsevier, vol. 265(3), pages 919-930.
    5. Tijms, H.C. & Coevering, M.C.T. van de, 1990. "How to solve numerically the equilibrium equations of a Markov chain with infinitely many states," Serie Research Memoranda 0046, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    6. S. K. Samanta & R. Nandi, 2021. "Queue-Length, Waiting-Time and Service Batch Size Analysis for the Discrete-Time GI/D-MSP (a,b) / 1 / ∞ $^{\text {(a,b)}}/1/\infty $ Queueing System," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1461-1488, December.
    7. A. Banik & U. Gupta, 2007. "Analyzing the finite buffer batch arrival queue under Markovian service process: GI X /MSP/1/N," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 146-160, July.
    8. A. D. Banik & M. L. Chaudhry, 2017. "Efficient Computational Analysis of Stationary Probabilities for the Queueing System BMAP / G /1/ N With or Without Vacation(s)," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 140-151, February.
    9. Pekergin, Nihal & Dayar, Tugrul & Alparslan, Denizhan N., 2005. "Componentwise bounds for nearly completely decomposable Markov chains using stochastic comparison and reordering," European Journal of Operational Research, Elsevier, vol. 165(3), pages 810-825, September.
    10. Liu, Jinpeng & Liu, Yuanyuan & Zhao, Yiqiang Q., 2022. "Augmented truncation approximations to the solution of Poisson’s equation for Markov chains," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    11. Vladimir Vishnevsky & Olga Semenova, 2021. "Polling Systems and Their Application to Telecommunication Networks," Mathematics, MDPI, vol. 9(2), pages 1-30, January.
    12. V. Ramaswami & David Poole & Soohan Ahn & Simon Byers & Alan Kaplan, 2005. "Ensuring Access to Emergency Services in the Presence of Long Internet Dial-Up Calls," Interfaces, INFORMS, vol. 35(5), pages 411-422, October.
    13. Cruz, Juan Alberto Rojas, 2020. "Sensitivity of the stationary distributions of denumerable Markov chains," Statistics & Probability Letters, Elsevier, vol. 166(C).
    14. Kao, Edward P. C. & Wilson, Sandra D., 1999. "Analysis of nonpreemptive priority queues with multiple servers and two priority classes," European Journal of Operational Research, Elsevier, vol. 118(1), pages 181-193, October.
    15. Badredine Issaadi, 2020. "Weak stability bounds for approximations of invariant measures with applications to queueing," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 371-400, March.
    16. Amod J. Basnet & Isaac M. Sonin, 2022. "Parallel computing for Markov chains with islands and ports," Annals of Operations Research, Springer, vol. 317(2), pages 335-352, October.
    17. K. Sikdar & S. K. Samanta, 2016. "Analysis of a finite buffer variable batch service queue with batch Markovian arrival process and server’s vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 53(3), pages 553-583, September.
    18. Souvik Ghosh & A. D. Banik & Joris Walraevens & Herwig Bruneel, 2022. "A detailed note on the finite-buffer queueing system with correlated batch-arrivals and batch-size-/phase-dependent bulk-service," 4OR, Springer, vol. 20(2), pages 241-272, June.
    19. Shaler Stidham, 2002. "Analysis, Design, and Control of Queueing Systems," Operations Research, INFORMS, vol. 50(1), pages 197-216, February.
    20. Simonot, F., 1995. "Sur l'approximation de la distribution stationnaire d'une chaîne de Markov stochastiquement monotone," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 133-149, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:85:y:2017:i:1:d:10.1007_s11134-016-9504-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.