Stability of a two-queue cyclic polling system with BMAPs under gated service and state-dependent time-limited service disciplines
Author
Abstract
Suggested Citation
DOI: 10.1007/s11134-016-9504-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Winfried K. Grassmann & Michael I. Taksar & Daniel P. Heyman, 1985. "Regenerative Analysis and Steady State Distributions for Markov Chains," Operations Research, INFORMS, vol. 33(5), pages 1107-1116, October.
- Gibson, Diana & Seneta, E., 1987. "Monotone infinite stochastic matrices and their augmented truncations," Stochastic Processes and their Applications, Elsevier, vol. 24(2), pages 287-292, May.
- Saffer, Zsolt & Telek, Miklós, 2009. "Stability of periodic polling system with BMAP arrivals," European Journal of Operational Research, Elsevier, vol. 197(1), pages 188-195, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jewgeni H. Dshalalow & Ahmed Merie & Ryan T. White, 2020. "Fluctuation Analysis in Parallel Queues with Hysteretic Control," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 295-327, March.
- Jewgeni H. Dshalalow & Ahmed Merie, 2018. "Fluctuation analysis in queues with several operational modes and priority customers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 309-333, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yiqiang Q. Zhao & W. John Braun & Wei Li, 1999. "Northwest corner and banded matrix approximations to a Markov chain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(2), pages 187-197, March.
- Shaler Stidham, 2002. "Analysis, Design, and Control of Queueing Systems," Operations Research, INFORMS, vol. 50(1), pages 197-216, February.
- Simonot, F., 1995. "Sur l'approximation de la distribution stationnaire d'une chaîne de Markov stochastiquement monotone," Stochastic Processes and their Applications, Elsevier, vol. 56(1), pages 133-149, March.
- A. D. Banik & M. L. Chaudhry & U. C. Gupta, 2008. "On the Finite Buffer Queue with Renewal Input and Batch Markovian Service Process: GI/BMSP/1/N," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 559-575, December.
- Braunsteins, Peter & Decrouez, Geoffrey & Hautphenne, Sophie, 2019. "A pathwise approach to the extinction of branching processes with countably many types," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 713-739.
- Abhijit Datta Banik & Souvik Ghosh & M. L. Chaudhry, 2020. "On the optimal control of loss probability and profit in a GI/C-BMSP/1/N queueing system," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 144-162, March.
- Apurva Jain, 2006. "Priority and dynamic scheduling in a make‐to‐stock queue with hyperexponential demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 363-382, August.
- Pala, Ali & Zhuang, Jun, 2018. "Security screening queues with impatient applicants: A new model with a case study," European Journal of Operational Research, Elsevier, vol. 265(3), pages 919-930.
- Tijms, H.C. & Coevering, M.C.T. van de, 1990. "How to solve numerically the equilibrium equations of a Markov chain with infinitely many states," Serie Research Memoranda 0046, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- Senthil K. Veeraraghavan & Laurens G. Debo, 2011. "Herding in Queues with Waiting Costs: Rationality and Regret," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 329-346, July.
- S. K. Samanta & R. Nandi, 2021. "Queue-Length, Waiting-Time and Service Batch Size Analysis for the Discrete-Time GI/D-MSP (a,b) / 1 / ∞ $^{\text {(a,b)}}/1/\infty $ Queueing System," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1461-1488, December.
- Isaac M. Sonin & Constantine Steinberg, 2016. "Continue, quit, restart probability model," Annals of Operations Research, Springer, vol. 241(1), pages 295-318, June.
- A. Banik & U. Gupta, 2007. "Analyzing the finite buffer batch arrival queue under Markovian service process: GI X /MSP/1/N," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 146-160, July.
- A. D. Banik & M. L. Chaudhry, 2017. "Efficient Computational Analysis of Stationary Probabilities for the Queueing System BMAP / G /1/ N With or Without Vacation(s)," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 140-151, February.
- Pekergin, Nihal & Dayar, Tugrul & Alparslan, Denizhan N., 2005. "Componentwise bounds for nearly completely decomposable Markov chains using stochastic comparison and reordering," European Journal of Operational Research, Elsevier, vol. 165(3), pages 810-825, September.
- Liu, Jinpeng & Liu, Yuanyuan & Zhao, Yiqiang Q., 2022. "Augmented truncation approximations to the solution of Poisson’s equation for Markov chains," Applied Mathematics and Computation, Elsevier, vol. 414(C).
- Vladimir Vishnevsky & Olga Semenova, 2021. "Polling Systems and Their Application to Telecommunication Networks," Mathematics, MDPI, vol. 9(2), pages 1-30, January.
- V. Ramaswami & David Poole & Soohan Ahn & Simon Byers & Alan Kaplan, 2005. "Ensuring Access to Emergency Services in the Presence of Long Internet Dial-Up Calls," Interfaces, INFORMS, vol. 35(5), pages 411-422, October.
- Edmundo de Souza e Silva & Rosa M. M. Leão & Raymond Marie, 2013. "Efficient Transient Analysis of Markovian Models Using a Block Reduction Approach," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 743-757, November.
- Cruz, Juan Alberto Rojas, 2020. "Sensitivity of the stationary distributions of denumerable Markov chains," Statistics & Probability Letters, Elsevier, vol. 166(C).
More about this item
Keywords
Polling system; Stability; Batch Markovian arrival process; Gated service; State-dependent time-limited service; Preemptive repeat different;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:85:y:2017:i:1:d:10.1007_s11134-016-9504-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.