A detailed note on the finite-buffer queueing system with correlated batch-arrivals and batch-size-/phase-dependent bulk-service
Author
Abstract
Suggested Citation
DOI: 10.1007/s10288-021-00478-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- S. Pradhan & U. C. Gupta, 2019. "Analysis of an infinite-buffer batch-size-dependent service queue with Markovian arrival process," Annals of Operations Research, Springer, vol. 277(2), pages 161-196, June.
- A. D. Banik & M. L. Chaudhry, 2017. "Efficient Computational Analysis of Stationary Probabilities for the Queueing System BMAP / G /1/ N With or Without Vacation(s)," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 140-151, February.
- António Pacheco & Helena Ribeiro, 2008. "Consecutive customer losses in oscillating GI X /M//n systems with state dependent services rates," Annals of Operations Research, Springer, vol. 162(1), pages 143-158, September.
- Warren B. Powell, 1985. "Analysis of Vehicle Holding and Cancellation Strategies in Bulk Arrival, Bulk Service Queues," Transportation Science, INFORMS, vol. 19(4), pages 352-377, November.
- Winfried K. Grassmann & Michael I. Taksar & Daniel P. Heyman, 1985. "Regenerative Analysis and Steady State Distributions for Markov Chains," Operations Research, INFORMS, vol. 33(5), pages 1107-1116, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Srinivas R. Chakravarthy & Serife Ozkar, 2024. "A Queueing Model with BMAP Arrivals and Heterogeneous Phase Type Group Services," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-30, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Srinivas R. Chakravarthy & Serife Ozkar, 2024. "A Queueing Model with BMAP Arrivals and Heterogeneous Phase Type Group Services," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-30, December.
- Le-Duc, T. & de Koster, M.B.M., 2002. "Determining The Optimal Order Picking Batch Size In Single Aisle Warehouses," ERIM Report Series Research in Management ERS-2002-64-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Sergei Dudin & Olga Dudina, 2023. "Analysis of a Multi-Server Queue with Group Service and Service Time Dependent on the Size of a Group as a Model of a Delivery System," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
- Tijms, H.C. & Coevering, M.C.T. van de, 1990. "How to solve numerically the equilibrium equations of a Markov chain with infinitely many states," Serie Research Memoranda 0046, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
- S. K. Samanta & R. Nandi, 2021. "Queue-Length, Waiting-Time and Service Batch Size Analysis for the Discrete-Time GI/D-MSP (a,b) / 1 / ∞ $^{\text {(a,b)}}/1/\infty $ Queueing System," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1461-1488, December.
- Anton J. Kleywegt & Jason D. Papastavrou, 1998. "Acceptance and Dispatching Policies for a Distribution Problem," Transportation Science, INFORMS, vol. 32(2), pages 127-141, May.
- A. Banik & U. Gupta, 2007. "Analyzing the finite buffer batch arrival queue under Markovian service process: GI X /MSP/1/N," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 146-160, July.
- Andrzej Chydzinski & Pawel Mrozowski, 2016. "Queues with Dropping Functions and General Arrival Processes," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-23, March.
- Kao, Edward P. C. & Wilson, Sandra D., 1999. "Analysis of nonpreemptive priority queues with multiple servers and two priority classes," European Journal of Operational Research, Elsevier, vol. 118(1), pages 181-193, October.
- Amod J. Basnet & Isaac M. Sonin, 2022. "Parallel computing for Markov chains with islands and ports," Annals of Operations Research, Springer, vol. 317(2), pages 335-352, October.
- Dieter Fiems & Koen De Turck, 2023. "Analysis of Discrete-Time Queues with Branching Arrivals," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
- Katerina P. Papadaki & Warren B. Powell, 2003. "An adaptive dynamic programming algorithm for a stochastic multiproduct batch dispatch problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 742-769, October.
- M. A. A. Boon & A. J. E. M. Janssen & J. S. H. Leeuwaarden & R. W. Timmerman, 2019. "Pollaczek contour integrals for the fixed-cycle traffic-light queue," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 89-111, February.
- A. D. Banik & M. L. Chaudhry & U. C. Gupta, 2008. "On the Finite Buffer Queue with Renewal Input and Batch Markovian Service Process: GI/BMSP/1/N," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 559-575, December.
- Sıla Çetinkaya & Chung‐Yee Lee, 2002. "Optimal outbound dispatch policies: Modeling inventory and cargo capacity," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 531-556, September.
- Senthil K. Veeraraghavan & Laurens G. Debo, 2011. "Herding in Queues with Waiting Costs: Rationality and Regret," Manufacturing & Service Operations Management, INFORMS, vol. 13(3), pages 329-346, July.
- Isaac M. Sonin & Constantine Steinberg, 2016. "Continue, quit, restart probability model," Annals of Operations Research, Springer, vol. 241(1), pages 295-318, June.
- Ayane Nakamura & Tuan Phung-Duc, 2023. "Equilibrium Analysis for Batch Service Queueing Systems with Strategic Choice of Batch Size," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
- Srinivas R. Chakravarthy & Shruti & Alexander Rumyantsev, 2021. "Analysis of a Queueing Model with Batch Markovian Arrival Process and General Distribution for Group Clearance," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1551-1579, December.
- Edmundo de Souza e Silva & Rosa M. M. Leão & Raymond Marie, 2013. "Efficient Transient Analysis of Markovian Models Using a Block Reduction Approach," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 743-757, November.
More about this item
Keywords
Finite-buffer queue; Batch Markovian arrival process (BMAP); Markovian service process (MSP); Batch-size-dependent bulk service; Performance measures; Consecutive customer loss (CCL);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:20:y:2022:i:2:d:10.1007_s10288-021-00478-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.