IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v84y2016i3d10.1007_s11134-016-9497-7.html
   My bibliography  Save this article

Steady-state analysis of shortest expected delay routing

Author

Listed:
  • Jori Selen

    (Eindhoven University of Technology
    Eindhoven University of Technology)

  • Ivo Adan

    (Eindhoven University of Technology)

  • Stella Kapodistria

    (Eindhoven University of Technology)

  • Johan Leeuwaarden

    (Eindhoven University of Technology)

Abstract

We consider a queueing system consisting of two nonidentical exponential servers, where each server has its own dedicated queue and serves the customers in that queue FCFS. Customers arrive according to a Poisson process and join the queue promising the shortest expected delay, which is a natural and near-optimal policy for systems with nonidentical servers. This system can be modeled as an inhomogeneous random walk in the quadrant. By stretching the boundaries of the compensation approach we prove that the equilibrium distribution of this random walk can be expressed as a series of product forms that can be determined recursively. The resulting series expression is directly amenable to numerical calculations and it also provides insight into the asymptotic behavior of the equilibrium probabilities as one of the state coordinates tends to infinity.

Suggested Citation

  • Jori Selen & Ivo Adan & Stella Kapodistria & Johan Leeuwaarden, 2016. "Steady-state analysis of shortest expected delay routing," Queueing Systems: Theory and Applications, Springer, vol. 84(3), pages 309-354, December.
  • Handle: RePEc:spr:queues:v:84:y:2016:i:3:d:10.1007_s11134-016-9497-7
    DOI: 10.1007/s11134-016-9497-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-016-9497-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-016-9497-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanc, J.P.C., 2009. "Bad luck when joining the shortest queue," European Journal of Operational Research, Elsevier, vol. 195(1), pages 167-173, May.
    2. Ward Whitt, 1986. "Deciding Which Queue to Join: Some Counterexamples," Operations Research, INFORMS, vol. 34(1), pages 55-62, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jazeem Abdul Jaleel & Sherwin Doroudi & Kristen Gardner & Alexander Wickeham, 2022. "A general “power-of-d” dispatching framework for heterogeneous systems," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 431-480, December.
    2. Jing Dong & Elad Yom-Tov & Galit B. Yom-Tov, 2019. "The Impact of Delay Announcements on Hospital Network Coordination and Waiting Times," Management Science, INFORMS, vol. 67(5), pages 1969-1994, May.
    3. Siddharth Prakash Singh & Mohammad Delasay & Alan Scheller‐Wolf, 2023. "Real‐time delay announcement under competition," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 863-881, March.
    4. Nur Sunar & Yichen Tu & Serhan Ziya, 2021. "Pooled vs. Dedicated Queues when Customers Are Delay-Sensitive," Management Science, INFORMS, vol. 67(6), pages 3785-3802, June.
    5. Merino, S. & Sánchez, F.J. & Sidrach de Cardona, M. & Guzmán, F. & Guzmán, R. & Martínez, J. & Sotorrío, P.J., 2018. "Optimization of energy distribution in solar panel array configurations by graphs and Minkowski’s paths," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 48-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ivo J. B. F. Adan & Onno J. Boxma & Stella Kapodistria & Vidyadhar G. Kulkarni, 2016. "The shorter queue polling model," Annals of Operations Research, Springer, vol. 241(1), pages 167-200, June.
    2. Plinio S. Dester & Christine Fricker & Danielle Tibi, 2017. "Stationary analysis of the shortest queue problem," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 211-243, December.
    3. Josh Reed & Yair Shaki, 2015. "A Fair Policy for the G / GI / N Queue with Multiple Server Pools," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 558-595, March.
    4. Parlakturk, Ali & Kumar, Sunil, 2004. "Self-Interested Routing in Queueing Networks," Research Papers 1782r, Stanford University, Graduate School of Business.
    5. Athanasia Manou & Antonis Economou & Fikri Karaesmen, 2014. "Strategic Customers in a Transportation Station: When Is It Optimal to Wait?," Operations Research, INFORMS, vol. 62(4), pages 910-925, August.
    6. V.D. Dinopoulou & C. Melolidakis, 2001. "Asymptotically optimal component assembly plans in repairable systems and server allocation in parallel multiserver queues," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(8), pages 732-746, December.
    7. de Lange, Robert & Samoilovich, Ilya & van der Rhee, Bo, 2013. "Virtual queuing at airport security lanes," European Journal of Operational Research, Elsevier, vol. 225(1), pages 153-165.
    8. Yi Ouyang & Demosthenis Teneketzis, 2022. "Signaling for decentralized routing in a queueing network," Annals of Operations Research, Springer, vol. 317(2), pages 737-775, October.
    9. Yan Chen & Ward Whitt, 2020. "Algorithms for the upper bound mean waiting time in the GI/GI/1 queue," Queueing Systems: Theory and Applications, Springer, vol. 94(3), pages 327-356, April.
    10. Jazeem Abdul Jaleel & Sherwin Doroudi & Kristen Gardner & Alexander Wickeham, 2022. "A general “power-of-d” dispatching framework for heterogeneous systems," Queueing Systems: Theory and Applications, Springer, vol. 102(3), pages 431-480, December.
    11. Olga Bountali & Antonis Economou, 2019. "Strategic customer behavior in a two-stage batch processing system," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 3-29, October.
    12. de Palma, André & Fosgerau, Mogens, 2013. "Random queues and risk averse users," European Journal of Operational Research, Elsevier, vol. 230(2), pages 313-320.
    13. Hong Chen & Heng-Qing Ye, 2012. "Asymptotic Optimality of Balanced Routing," Operations Research, INFORMS, vol. 60(1), pages 163-179, February.
    14. Senthil Veeraraghavan & Laurens Debo, 2009. "Joining Longer Queues: Information Externalities in Queue Choice," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 543-562, April.
    15. Danielle Tibi, 2019. "Martingales and buffer overflow for the symmetric shortest queue model," Queueing Systems: Theory and Applications, Springer, vol. 93(1), pages 153-190, October.
    16. Hyytiä, Esa & Penttinen, Aleksi & Aalto, Samuli, 2012. "Size- and state-aware dispatching problem with queue-specific job sizes," European Journal of Operational Research, Elsevier, vol. 217(2), pages 357-370.
    17. Fernanda Campello & Armann Ingolfsson & Robert A. Shumsky, 2017. "Queueing Models of Case Managers," Management Science, INFORMS, vol. 63(3), pages 882-900, March.
    18. Tolga Tezcan, 2008. "Optimal Control of Distributed Parallel Server Systems Under the Halfin and Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 51-90, February.
    19. Zhang, Zhongju & Daigle, John, 2012. "Analysis of job assignment with batch arrivals among heterogeneous servers," European Journal of Operational Research, Elsevier, vol. 217(1), pages 149-161.
    20. Coolen, F. P. A. & Coolen-Schrijner, P., 2003. "A nonparametric predictive method for queues," European Journal of Operational Research, Elsevier, vol. 145(2), pages 425-442, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:84:y:2016:i:3:d:10.1007_s11134-016-9497-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.