IDEAS home Printed from https://ideas.repec.org/a/spr/queues/v100y2022i3d10.1007_s11134-022-09830-2.html
   My bibliography  Save this article

Calibrating nonstationary queueing network models

Author

Listed:
  • Harsha Honnappa

    (Purdue University)

Abstract

No abstract is available for this item.

Suggested Citation

  • Harsha Honnappa, 2022. "Calibrating nonstationary queueing network models," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 525-527, April.
  • Handle: RePEc:spr:queues:v:100:y:2022:i:3:d:10.1007_s11134-022-09830-2
    DOI: 10.1007/s11134-022-09830-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11134-022-09830-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11134-022-09830-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaqiao Hu & Yijie Peng & Gongbo Zhang & Qi Zhang, 2022. "A Stochastic Approximation Method for Simulation-Based Quantile Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2889-2907, November.
    2. Peter W. Glynn & Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2021. "Computing Sensitivities for Distortion Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1520-1532, October.
    3. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:queues:v:100:y:2022:i:3:d:10.1007_s11134-022-09830-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.