Convergences in cognitive science, social network analysis, pattern recognition and machine intelligence as dynamic processes in non-Euclidean space
Author
Abstract
Suggested Citation
DOI: 10.1007/s11135-019-00852-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
- Joseph Woelfel & George Barnett & Robert Pruzek & Robert Zimmelman, 1989. "Rotation to simple processes: the effect of alternative rotation rules on observed patterns in time-ordered measurements," Quality & Quantity: International Journal of Methodology, Springer, vol. 23(1), pages 3-20, February.
- Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
- Gale Young & A. Householder, 1938. "Discussion of a set of points in terms of their mutual distances," Psychometrika, Springer;The Psychometric Society, vol. 3(1), pages 19-22, March.
- J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
- Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
- Joseph Woelfel & George Barnett, 1982. "Multidimensional scaling in Riemann space," Quality & Quantity: International Journal of Methodology, Springer, vol. 16(6), pages 469-491, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bert Green, 1966. "The computer revolution in psychometrics," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 437-445, December.
- J. Carroll, 1985. "Review," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 133-140, March.
- Aurea Grané & Rosario Romera, 2018. "On Visualizing Mixed-Type Data," Sociological Methods & Research, , vol. 47(2), pages 207-239, March.
- Jacqueline Meulman, 1992. "The integration of multidimensional scaling and multivariate analysis with optimal transformations," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 539-565, December.
- Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
- Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
- Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
- Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
- Dionisios Koutsantonis & Konstantinos Koutsantonis & Nikolaos P. Bakas & Vagelis Plevris & Andreas Langousis & Savvas A. Chatzichristofis, 2022. "Bibliometric Literature Review of Adaptive Learning Systems," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
- Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
- Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
- J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
- Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
- J. Ramsay, 1969. "Some statistical considerations in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 167-182, June.
- Massimiliano Agovino & Maria Ferrara & Antonio Garofalo, 2017. "The driving factors of separate waste collection in Italy: a multidimensional analysis at provincial level," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(6), pages 2297-2316, December.
- Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Research Memorandum 725, Tilburg University, School of Economics and Management.
- Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
- Raffaella Piccarreta, 2012. "Graphical and Smoothing Techniques for Sequence Analysis," Sociological Methods & Research, , vol. 41(2), pages 362-380, May.
- Xiaomeng Cao & Yuan Gao & Jingwei Cui & Shuangbiao Han & Lei Kang & Sha Song & Chengshan Wang, 2020. "Pore Characteristics of Lacustrine Shale Oil Reservoir in the Cretaceous Qingshankou Formation of the Songliao Basin, NE China," Energies, MDPI, vol. 13(8), pages 1-25, April.
More about this item
Keywords
Machine intelligence; Neural network; Multidimensional scaling; Social network analysis; Galileo theory; Multidimensional space; Non-Euclidean space; Artificial intelligence; Inertial reference frame;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:54:y:2020:i:1:d:10.1007_s11135-019-00852-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.