IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v51y2017i3d10.1007_s11135-016-0337-y.html
   My bibliography  Save this article

RETRACTED ARTICLE: Prediction of economic growth by extreme learning approach based on science and technology transfer

Author

Listed:
  • Petra Karanikić

    (University of Rijeka)

  • Igor Mladenović

    (University of Niš, Faculty of Economics)

  • Svetlana Sokolov-Mladenović

    (University of Niš, Faculty of Economics)

  • Meysam Alizamir

    (Islamic Azad University)

Abstract

The purpose of this research is to develop and apply the extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. Economic growth may be developed on the basis on combination of different factors. In this investigation was analyzed the economic growth prediction based on the science and technology transfer. The main goal was to analyze the influence of number of granted European patents on the economic growth by field of technology. GDP was used as economic growth indicator. The ELM results are compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models were accessed based on simulation results and using several statistical indicators. Coefficient of determination for ELM method is 0.9841, for ANN method it is 0.7956 and for the GP method it is 0.7561. Based upon simulation results, it is demonstrated that ELM can be utilized effectively in applications of GDP forecasting.

Suggested Citation

  • Petra Karanikić & Igor Mladenović & Svetlana Sokolov-Mladenović & Meysam Alizamir, 2017. "RETRACTED ARTICLE: Prediction of economic growth by extreme learning approach based on science and technology transfer," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1395-1401, May.
  • Handle: RePEc:spr:qualqt:v:51:y:2017:i:3:d:10.1007_s11135-016-0337-y
    DOI: 10.1007/s11135-016-0337-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-016-0337-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-016-0337-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krkoska, Libor & Teksoz, Utku, 2007. "Accuracy of GDP growth forecasts for transition countries: Ten years of forecasting assessed," International Journal of Forecasting, Elsevier, vol. 23(1), pages 29-45.
    2. Krkoska, Libor & Teksoz, Utku, 2009. "How reliable are forecasts of GDP growth and inflation for countries with limited coverage?," Economic Systems, Elsevier, vol. 33(4), pages 376-388, December.
    3. Feng, Lihua & Zhang, Jianzhen, 2014. "Application of artificial neural networks in tendency forecasting of economic growth," Economic Modelling, Elsevier, vol. 40(C), pages 76-80.
    4. Zeira, Joseph & Zoabi, Hosny, 2015. "Economic growth and sector dynamics," European Economic Review, Elsevier, vol. 79(C), pages 1-15.
    5. Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
    6. Ferrarini, Benno & Scaramozzino, Pasquale, 2016. "Production complexity, adaptability and economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 37(C), pages 52-61.
    7. Barsoum, Fady & Stankiewicz, Sandra, 2015. "Forecasting GDP growth using mixed-frequency models with switching regimes," International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
    8. Shamshirband, Shahaboddin & Mohammadi, Kasra & Yee, Por Lip & Petković, Dalibor & Mostafaeipour, Ali, 2015. "A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1031-1042.
    9. Dias, Francisco & Pinheiro, Maximiano & Rua, António, 2015. "Forecasting Portuguese GDP with factor models: Pre- and post-crisis evidence," Economic Modelling, Elsevier, vol. 44(C), pages 266-272.
    10. Modis, Theodore, 2013. "Long-term GDP forecasts and the prospects for growth," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1557-1562.
    11. Mohammadi, Kasra & Shamshirband, Shahaboddin & Yee, Por Lip & Petković, Dalibor & Zamani, Mazdak & Ch, Sudheer, 2015. "Predicting the wind power density based upon extreme learning machine," Energy, Elsevier, vol. 86(C), pages 232-239.
    12. Modis, Theodore, 2013. "Long-Term GDP Forecasts and the Prospects for Growth," OSF Preprints aqcht, Center for Open Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joao J. M. Ferreira & Cristina Fernandes & Vanessa Ratten, 2019. "The effects of technology transfers and institutional factors on economic growth: evidence from Europe and Oceania," The Journal of Technology Transfer, Springer, vol. 44(5), pages 1505-1528, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maksimović, Goran & Jović, Srđan & Jovanović, Radomir, 2017. "Economic growth rate management by soft computing approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 520-524.
    2. Igor Mladenović & Miloš Milovančević & Svetlana Sokolov-Mladenović, 2017. "RETRACTED ARTICLE: Analyzing of innovations influence on economic growth by fuzzy system," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1297-1304, May.
    3. Marković, Dušan & Petković, Dalibor & Nikolić, Vlastimir & Milovančević, Miloš & Petković, Biljana, 2017. "Soft computing prediction of economic growth based in science and technology factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 217-220.
    4. Dušan Marković & Igor Mladenović & Miloš Milovančević, 2017. "RETRACTED ARTICLE: Estimation of the most influential science and technology factors for economic growth forecasting by soft computing technique," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(3), pages 1133-1146, May.
    5. Đokić, Aleksandar & Jović, Srđan, 2017. "Evaluation of agriculture and industry effect on economic health by ANFIS approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 396-399.
    6. Milačić, Ljubiša & Jović, Srđan & Vujović, Tanja & Miljković, Jovica, 2017. "Application of artificial neural network with extreme learning machine for economic growth estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 285-288.
    7. Kordanuli, Bojana & Barjaktarović, Lidija & Jeremić, Ljiljana & Alizamir, Meysam, 2017. "Appraisal of artificial neural network for forecasting of economic parameters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 515-519.
    8. Sokolov-Mladenović, Svetlana & Milovančević, Milos & Mladenović, Igor, 2017. "Evaluation of trade influence on economic growth rate by computational intelligence approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 358-362.
    9. Karen Poghosyan & Ruben Poghosyan, 2021. "On the Applicability of Dynamic Factor Models for Forecasting Real GDP Growth in Armenia," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 71(1), pages 52-79, June.
    10. Maksimović, Goran & Milosavljević, Valentina & Ćirković, Bratislav & Milošević, Božidar & Jović, Srđan & Alizamir, Meysam, 2017. "Analyzing of economic growth based on electricity consumption from different sources," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 37-40.
    11. Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    12. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    13. Yoichi Tsuchiya, 2021. "Thirty‐year assessment of Asian Development Bank's forecasts," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 35(2), pages 18-40, November.
    14. Sinem Kilic Celik & M. Ayhan Kose & Franziska Ohnsorge, 2023. "Potential Growth Prospects: Risks, Rewards and Policies," CAMA Working Papers 2023-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Su, Yu-Shan & Huang, Hsini & Daim, Tugrul & Chien, Pan-Wei & Peng, Ru-Ling & Karaman Akgul, Arzu, 2023. "Assessing the technological trajectory of 5G-V2X autonomous driving inventions: Use of patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    16. Jović, Srđan & Maksimović, Goran & Jovović, David, 2016. "Appraisal of natural resources rents and economic development," Resources Policy, Elsevier, vol. 50(C), pages 289-291.
    17. Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    18. de Groot, E.A. & Segers, R. & Prins, D., 2021. "Disentangling the enigma of multi-structured economic cycles - A new appearance of the golden ratio," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    19. Goran Maksimović & Srđan Jović & David Jovović & Marina Jovović, 2019. "RETRACTED ARTICLE: Analyses of Economic Development Based on Different Factors," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1103-1109, March.
    20. Makade, Rahul G. & Chakrabarti, Siddharth & Jamil, Basharat & Sakhale, C.N., 2020. "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach," Renewable Energy, Elsevier, vol. 146(C), pages 2044-2059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:51:y:2017:i:3:d:10.1007_s11135-016-0337-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.