IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v49y2015i1p255-266.html
   My bibliography  Save this article

Bayesian informative priors with Yang and Land’s hierarchical age–period–cohort model

Author

Listed:
  • Andrew Bell
  • Kelvyn Jones

Abstract

Previous work (Bell and Jones, Demogr Res 2013a ; Bell and Jones, Soc Sci Med 2013c ; Luo and Hodges, Under review 2013 ) has shown that, when there are trends in either the period or cohort residuals of Yang and Land’s Hierarchical age–period–cohort (APC) model (Yang and Land, Sociol Methodol 36:75–97 2006 ; Yang and Land, APC analysis: new models, methods, and empirical applications. CRC Press, Boca Raton 2013 ), the model can incorrectly estimate those trends, because of the well-known APC identification problem. Here we consider modelling possibilities when the age effect is known, allowing any period or cohort trends to be estimated. In particular, we suggest the application of informative priors, in a Bayesian framework, to the age trend, and we use a variety of simulated but realistic datasets to explicate this. Similarly, an informative prior could be applied to an estimated period or cohort trend, allowing the other two APC trends to be estimated. We show that a very strong informative prior is required for this purpose. As such, models of this kind can be fitted but are only useful when very strong evidence of the age trend (for example physiological evidence regarding health) is available. Alternatively, a variety of strong priors can be tested and the most plausible solution argued for on the basis of theory. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Andrew Bell & Kelvyn Jones, 2015. "Bayesian informative priors with Yang and Land’s hierarchical age–period–cohort model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 255-266, January.
  • Handle: RePEc:spr:qualqt:v:49:y:2015:i:1:p:255-266
    DOI: 10.1007/s11135-013-9985-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-013-9985-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-013-9985-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liying Luo, 2013. "Assessing Validity and Application Scope of the Intrinsic Estimator Approach to the Age-Period-Cohort Problem," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 1945-1967, December.
    2. Reither, Eric N. & Hauser, Robert M. & Yang, Yang, 2009. "Do birth cohorts matter? Age-period-cohort analyses of the obesity epidemic in the United States," Social Science & Medicine, Elsevier, vol. 69(10), pages 1439-1448, November.
    3. Leckie, George & Charlton, Chris, 2013. "runmlwin: A Program to Run the MLwiN Multilevel Modeling Software from within Stata," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i11).
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Daniel Stegmueller, 2013. "How Many Countries for Multilevel Modeling? A Comparison of Frequentist and Bayesian Approaches," American Journal of Political Science, John Wiley & Sons, vol. 57(3), pages 748-761, July.
    6. Yu-Kang Tu & George Davey Smith & Mark S Gilthorpe, 2011. "A New Approach to Age-Period-Cohort Analysis Using Partial Least Squares Regression: The Trend in Blood Pressure in the Glasgow Alumni Cohort," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert M. O’Brien, 2020. "Using old results to produce new solutions in age–period–cohort multiple classification models," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 111-124, February.
    2. Ethan Fosse & Christopher Winship, 2019. "Bounding Analyses of Age-Period-Cohort Effects," Demography, Springer;Population Association of America (PAA), vol. 56(5), pages 1975-2004, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Bell & Kelvyn Jones, 2015. "Bayesian informative priors with Yang and Land’s hierarchical age–period–cohort model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 255-266, January.
    2. Andrew Bell & Kelvyn Jones, 2018. "The hierarchical age–period–cohort model: Why does it find the results that it finds?," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 783-799, March.
    3. Andrew Bell & Kelvyn Jones, 2014. "Another 'futile quest'? A simulation study of Yang and Land's Hierarchical Age-Period-Cohort model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(11), pages 333-360.
    4. Delaruelle, Katrijn & Buffel, Veerle & Bracke, Piet, 2015. "Educational expansion and the education gradient in health: A hierarchical age-period-cohort analysis," Social Science & Medicine, Elsevier, vol. 145(C), pages 79-88.
    5. Ryan Masters & Robert Hummer & Daniel Powers & Audrey Beck & Shih-Fan Lin & Brian Finch, 2014. "Long-Term Trends in Adult Mortality for U.S. Blacks and Whites: An Examination of Period- and Cohort-Based Changes," Demography, Springer;Population Association of America (PAA), vol. 51(6), pages 2047-2073, December.
    6. Bischofberger, Stephan M. & Hiabu, Munir & Mammen, Enno & Nielsen, Jens Perch, 2019. "A comparison of in-sample forecasting methods," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 133-154.
    7. Pim Verbunt & Anne-Catherine Guio, 2019. "Explaining Differences Within and Between Countries in the Risk of Income Poverty and Severe Material Deprivation: Comparing Single and Multilevel Analyses," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 827-868, July.
    8. Ethan Fosse & Christopher Winship, 2019. "Bounding Analyses of Age-Period-Cohort Effects," Demography, Springer;Population Association of America (PAA), vol. 56(5), pages 1975-2004, October.
    9. Mohamed M. Mostafa, 2016. "Post-materialism, Religiosity, Political Orientation, Locus of Control and Concern for Global Warming: A Multilevel Analysis Across 40 Nations," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(3), pages 1273-1298, September.
    10. Qiang Fu & Kenneth Land, 2015. "The Increasing Prevalence of Overweight and Obesity of Children and Youth in China, 1989–2009: An Age–Period–Cohort Analysis," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 34(6), pages 901-921, December.
    11. Andrew Bell & Malcolm Fairbrother & Kelvyn Jones, 2019. "Fixed and random effects models: making an informed choice," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(2), pages 1051-1074, March.
    12. Myck, Michał & Oczkowska, Monika, 2022. "Healthier over time? Period effects in health among older Europeans in a step-wise approach to identification," Social Science & Medicine, Elsevier, vol. 297(C).
    13. Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.
    14. Gina Martin & Joanna Inchley & Candace Currie, 2019. "Do Drinking Motives Mediate the Relationship between Neighborhood Characteristics and Alcohol Use among Adolescents?," IJERPH, MDPI, vol. 16(5), pages 1-19, March.
    15. Shih-Yung Su & Wen-Chung Lee, 2019. "Age-period-cohort analysis with a constant-relative-variation constraint for an apportionment of period and cohort slopes," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-21, December.
    16. Reither, Eric N. & Masters, Ryan K. & Yang, Yang Claire & Powers, Daniel A. & Zheng, Hui & Land, Kenneth C., 2015. "Should age-period-cohort studies return to the methodologies of the 1970s?," Social Science & Medicine, Elsevier, vol. 128(C), pages 356-365.
    17. Song, Fei (Sophie) & Montabon, Frank & Xu, Yuhang, 2018. "The impact of national culture on corporate adoption of environmental management practices and their effectiveness," International Journal of Production Economics, Elsevier, vol. 205(C), pages 313-328.
    18. Portmann, Rahel & Mitrovic, Tanja & Gonthier, Hakim & Kosirnik, Céline & Knüsel, René & Jud, Andreas, 2022. "Do socio-structural factors influence the incidence and reporting of child neglect? An analysis of multi-sectoral national data from Switzerland," Children and Youth Services Review, Elsevier, vol. 140(C).
    19. Phil Mike Jones & Jon Minton & Andrew Bell, 2023. "Methods for disentangling period and cohort changes in mortality risk over the twentieth century: comparing graphical and modelling approaches," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3219-3239, August.
    20. Ruth Salway & Lydia Emm-Collison & Simon J. Sebire & Janice L. Thompson & Deborah A. Lawlor & Russell Jago, 2019. "A Multilevel Analysis of Neighbourhood, School, Friend and Individual-Level Variation in Primary School Children’s Physical Activity," IJERPH, MDPI, vol. 16(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:49:y:2015:i:1:p:255-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.