IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v47y2013i4p1803-1812.html
   My bibliography  Save this article

The effect of the individual chart with variable control limits on the river pollution monitoring

Author

Listed:
  • Pei-Hsi Lee
  • Yi-Hsien Huang
  • Tsen-I Kuo
  • Ching-Cheng Wang

Abstract

This study performs a model to evaluate the river water quality monitoring system. The standard River Pollution Index which includes dissolved oxygen (DO), biochemical oxygen demand (BOD 5 ), suspended solids (SS), and ammonia nitrogen (NH 3 -N) is collected from years 2006 to 2010 for monitoring of river water quality. Furthermore, control chart technology can monitor the river pollution and signal the aggravation of water quality. This study proposes an individual control chart with variable control limits (VCL individual chart) and verifies this chart can quickly signal the mean change of both normal can skew populations in statistical performances. In addition, this study also presents a real case that VCL individual chart is applied on monitoring the water quality of Taiwan’s river. This case shows the VCL individual chart controls successfully the river pollution, and this chart is very suitable to apply monitoring the water quality of rivers. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Pei-Hsi Lee & Yi-Hsien Huang & Tsen-I Kuo & Ching-Cheng Wang, 2013. "The effect of the individual chart with variable control limits on the river pollution monitoring," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 1803-1812, June.
  • Handle: RePEc:spr:qualqt:v:47:y:2013:i:4:p:1803-1812
    DOI: 10.1007/s11135-011-9627-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-011-9627-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-011-9627-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yu-Chang & Chou, Chao-Yu, 2007. "Non-normality and the variable parameters control charts," European Journal of Operational Research, Elsevier, vol. 176(1), pages 361-373, January.
    2. Luo, Yunzhao & Li, Zhonghua & Wang, Zhaojun, 2009. "Adaptive CUSUM control chart with variable sampling intervals," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2693-2701, May.
    3. De Magalhaes, Maysa S. & Epprecht, Eugenio K. & Costa, Antonio F. B., 2001. "Economic design of a Vp chart," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 191-200, December.
    4. Shu, Lianjie & Jiang, Wei & Wu, Zhang, 2008. "Adaptive CUSUM procedures with Markovian mean estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4395-4409, May.
    5. Giovanni Celano, 2009. "Robust design of adaptive control charts for manual manufacturing/inspection workstations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(2), pages 181-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Pei-Hsi, 2011. "Adaptive R charts with variable parameters," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 2003-2010, May.
    2. Zhou, Qin & Luo, Yunzhao & Wang, Zhaojun, 2010. "A control chart based on likelihood ratio test for detecting patterned mean and variance shifts," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1634-1645, June.
    3. Celano, Giovanni & De Magalhães, Maysa S. & Costa, Antonio F.B. & Fichera, Sergio, 2011. "A stochastic shift model for economically designed charts constrained by the process stage configuration," International Journal of Production Economics, Elsevier, vol. 132(2), pages 315-325, August.
    4. Zhang, Min & Nie, Guohua & He, Zhen, 2014. "Performance of cumulative count of conforming chart of variable sampling intervals with estimated control limits," International Journal of Production Economics, Elsevier, vol. 150(C), pages 114-124.
    5. M. Abolmohammadi & A. Seif & M. H. Behzadi & M. B. Moghadam, 2021. "Economic statistical design of adaptive $$\bar{X}$$ X ¯ control charts based on quality loss functions," Operational Research, Springer, vol. 21(2), pages 1041-1080, June.
    6. Franco, Bruno Chaves & Celano, Giovanni & Castagliola, Philippe & Costa, Antonio Fernando Branco, 2014. "Economic design of Shewhart control charts for monitoring autocorrelated data with skip sampling strategies," International Journal of Production Economics, Elsevier, vol. 151(C), pages 121-130.
    7. Su, Yan & Shu, Lianjie & Tsui, Kwok-Leung, 2011. "Adaptive EWMA procedures for monitoring processes subject to linear drifts," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2819-2829, October.
    8. De Magalhaes, Maysa S. & Moura Neto, Francisco D., 2005. "Joint economic model for totally adaptive and R charts," European Journal of Operational Research, Elsevier, vol. 161(1), pages 148-161, February.
    9. Lim, S.L. & Khoo, Michael B.C. & Teoh, W.L. & Xie, M., 2015. "Optimal designs of the variable sample size and sampling interval X¯ chart when process parameters are estimated," International Journal of Production Economics, Elsevier, vol. 166(C), pages 20-35.
    10. Lee, Pei-Hsi, 2013. "Joint statistical design of X¯ and s charts with combined double sampling and variable sampling interval," European Journal of Operational Research, Elsevier, vol. 225(2), pages 285-297.
    11. Guanfu Liu & Xiaolong Pu & Lei Wang & Dongdong Xiang, 2015. "CUSUM chart for detecting range shifts when monotonicity of likelihood ratio is invalid," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1635-1644, August.
    12. Maravelakis, Petros E. & Castagliola, Philippe, 2009. "An EWMA chart for monitoring the process standard deviation when parameters are estimated," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2653-2664, May.
    13. Ho, Linda Lee & Trindade, Anderson Laécio Galindo, 2009. "Economic design of an X chart for short-run production," International Journal of Production Economics, Elsevier, vol. 120(2), pages 613-624, August.
    14. Chen, Yan-Kwang & Hsieh, Kun-Lin & Chang, Cheng-Chang, 2007. "Economic design of the VSSI control charts for correlated data," International Journal of Production Economics, Elsevier, vol. 107(2), pages 528-539, June.
    15. Nenes, George & Tagaras, George, 2007. "The economically designed two-sided Bayesian control chart," European Journal of Operational Research, Elsevier, vol. 183(1), pages 263-277, November.
    16. Zhonghua Li & Peihua Qiu & Snigdhansu Chatterjee & Zhaojun Wang, 2013. "Using p values to design statistical process control charts," Statistical Papers, Springer, vol. 54(2), pages 523-539, May.
    17. Sánchez, Ismael, 2015. "Adaptive EWMA Control Charts with a Time Varying Smoothing Parameter," DES - Working Papers. Statistics and Econometrics. WS ws1507, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. M. A. Pasha & M. Bameni Moghadam & M. A. Rahim, 2020. "Effects of non-normal quality data on the integrated model of imperfect maintenance, early replacement, and economic design of $${\bar{X}}$$ X ¯ -control charts," Operational Research, Springer, vol. 20(4), pages 2519-2536, December.
    19. Wu, Zhang & Yang, Mei & Khoo, Michael B.C. & Yu, Fong-Jung, 2010. "Optimization designs and performance comparison of two CUSUM schemes for monitoring process shifts in mean and variance," European Journal of Operational Research, Elsevier, vol. 205(1), pages 136-150, August.
    20. Lin, Yu-Chang & Chou, Chao-Yu, 2005. "On the design of variable sample size and sampling intervals charts under non-normality," International Journal of Production Economics, Elsevier, vol. 96(2), pages 249-261, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:47:y:2013:i:4:p:1803-1812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.