IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v26y1992i4p427-434.html
   My bibliography  Save this article

Determining implied relationships on incomplete ordinal data

Author

Listed:
  • Elliot Noma

Abstract

No abstract is available for this item.

Suggested Citation

  • Elliot Noma, 1992. "Determining implied relationships on incomplete ordinal data," Quality & Quantity: International Journal of Methodology, Springer, vol. 26(4), pages 427-434, November.
  • Handle: RePEc:spr:qualqt:v:26:y:1992:i:4:p:427-434
    DOI: 10.1007/BF00170453
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF00170453
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF00170453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. H. Matheiss & David S. Rubin, 1980. "A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets," Mathematics of Operations Research, INFORMS, vol. 5(2), pages 167-185, May.
    2. William Gehrlein & Peter Fishburn, 1990. "Inducing relations on incomplete ordinal data," Quality & Quantity: International Journal of Methodology, Springer, vol. 24(1), pages 17-36, February.
    3. Paul Lehner & Elliot Noma, 1980. "A new solution to the problem of finding all numerical solutions to ordered metric structures," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 135-137, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cep:stiecm:em/2012/559 is not listed on IDEAS
    2. Li, Changmin & Yang, Hai & Zhu, Daoli & Meng, Qiang, 2012. "A global optimization method for continuous network design problems," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1144-1158.
    3. Tatiana Komarova, 2012. "Binary Choice Models with Discrete Regressors: Identification and Misspecification," STICERD - Econometrics Paper Series 559, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Liesiö, Juuso & Andelmin, Juho & Salo, Ahti, 2020. "Efficient allocation of resources to a portfolio of decision making units," European Journal of Operational Research, Elsevier, vol. 286(2), pages 619-636.
    5. Haines, Linda M., 1998. "A statistical approach to the analytic hierarchy process with interval judgements. (I). Distributions on feasible regions," European Journal of Operational Research, Elsevier, vol. 110(1), pages 112-125, October.
    6. repec:cep:stiecm:/2012/559 is not listed on IDEAS
    7. Makowski, David & Hendrix, Eligius M. T. & van Ittersum, Martin K. & Rossing, Walter A. H., 2001. "Generation and presentation of nearly optimal solutions for mixed-integer linear programming, applied to a case in farming system design," European Journal of Operational Research, Elsevier, vol. 132(2), pages 425-438, July.
    8. Ida, Masaaki, 2005. "Efficient solution generation for multiple objective linear programming based on extreme ray generation method," European Journal of Operational Research, Elsevier, vol. 160(1), pages 242-251, January.
    9. Komarova, Tatiana, 2013. "Binary choice models with discrete regressors: Identification and misspecification," Journal of Econometrics, Elsevier, vol. 177(1), pages 14-33.
    10. Harju, Mikko & Liesiö, Juuso & Virtanen, Kai, 2019. "Spatial multi-attribute decision analysis: Axiomatic foundations and incomplete preference information," European Journal of Operational Research, Elsevier, vol. 275(1), pages 167-181.
    11. Pey-Chun Chen & Pierre Hansen & Brigitte Jaumard & Hoang Tuy, 1998. "Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming," Operations Research, INFORMS, vol. 46(4), pages 548-562, August.
    12. José H. Dulá & Francisco J. López, 2006. "Algorithms for the Frame of a Finitely Generated Unbounded Polyhedron," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 97-110, February.
    13. Mattila, V. & Virtanen, K., 2015. "Ranking and selection for multiple performance measures using incomplete preference information," European Journal of Operational Research, Elsevier, vol. 242(2), pages 568-579.
    14. Troutt, M. D. & Pang, W. K. & Hou, S. H., 1999. "Performance of some boundary-seeking mode estimators on the dome bias model," European Journal of Operational Research, Elsevier, vol. 119(1), pages 209-218, November.
    15. Lennart Sjöberg, 2000. "The Methodology of Risk Perception Research," Quality & Quantity: International Journal of Methodology, Springer, vol. 34(4), pages 407-418, November.
    16. Mohammadali S. Monfared & Sayyed Ehsan Monabbati & Mahsa Mahdipour Azar, 2020. "Bi-objective optimization problems with two decision makers: refining Pareto-optimal front for equilibrium solution," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 567-584, June.
    17. Vetschera, Rudolf, 1996. "A recursive algorithm for volume-based sensitivity analysis of linear decision models," Discussion Papers, Series I 279, University of Konstanz, Department of Economics.
    18. Pooriya Beyhaghi & Daniele Cavaglieri & Thomas Bewley, 2016. "Delaunay-based derivative-free optimization via global surrogates, part I: linear constraints," Journal of Global Optimization, Springer, vol. 66(3), pages 331-382, November.
    19. Gallagher, Richard J. & Saleh, Ossama A., 1995. "A representation of an efficiency equivalent polyhedron for the objective set of a multiple objective linear program," European Journal of Operational Research, Elsevier, vol. 80(1), pages 204-212, January.
    20. Nonås, Sigrid Lise, 2009. "Finding and identifying optimal inventory levels for systems with common components," European Journal of Operational Research, Elsevier, vol. 193(1), pages 98-119, February.
    21. Piet-Lahanier, Hélène & Veres, Sándor M. & Walter, Eric, 1992. "Comparison of methods for solving sets of linear inequalities in the bounded-error context," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 34(6), pages 515-524.
    22. Mo, S.H. & Norton, J.P., 1990. "Fast and robust algorithm to compute exact polytope parameter bounds," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 32(5), pages 481-493.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:26:y:1992:i:4:p:427-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.