IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v16y2024i3d10.1007_s12469-023-00338-3.html
   My bibliography  Save this article

To ride-hail or not to ride-hail? Complementarity and competition between public transit and transportation network companies through the lens of app data

Author

Listed:
  • Hengfang Deng

    (Northeastern University)

  • Edgar Castro

    (Northeastern University)

  • Sage Gibbons

    (Northeastern University)

  • Justin Benedictis-Kessner

    (Harvard University)

  • Ryan Qi Wang

    (Northeastern University)

  • Daniel T. O’Brien

    (Northeastern University
    Boston Area Research Initiative)

Abstract

Transportation Network Company (TNC) services have become a prominent factor in urban transportation in recent years, and there is an ongoing debate regarding their relationship with public transit. While many argue that TNCs draw passengers away from public transportation, others believe the two modes complement each other. However, due to the inadequate sample size of rider surveys as primary data sources, our understanding of how riders choose between these two modalities remains limited. This study uses nine months of trip planning data generated by the Transit App, which captures how travelers engage with multiple options in real time, including TNC and public transit services. We extract measures from Transit describing the travel options and the habits of each individual user for sessions in which the user “tapped” on one of these two modes, indicating consideration of it as an option. Machine learning models predict the likelihood of a rider tapping TNC based on features of the available public transit options and other contextual factors (e.g., time of day, weather conditions). The models find that these taps are driven by factors that highlight the convenience of TNC, such as the waiting time, walking distance, and the number of transfers for public transportation trips. We also find that the majority of TNC trips tapped by app users combine the two modes when using the Transit App, with TNC acting as a connection to or from public transit. These results provide detailed additional evidence for current arguments for both competition and complementarity between TNC and public transit from a population that uses an app to navigate public transit.

Suggested Citation

  • Hengfang Deng & Edgar Castro & Sage Gibbons & Justin Benedictis-Kessner & Ryan Qi Wang & Daniel T. O’Brien, 2024. "To ride-hail or not to ride-hail? Complementarity and competition between public transit and transportation network companies through the lens of app data," Public Transport, Springer, vol. 16(3), pages 831-854, October.
  • Handle: RePEc:spr:pubtra:v:16:y:2024:i:3:d:10.1007_s12469-023-00338-3
    DOI: 10.1007/s12469-023-00338-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-023-00338-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-023-00338-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guangnian Xiao & Qin Cheng & Chunqin Zhang, 2019. "Detecting travel modes from smartphone-based travel surveys with continuous hidden Markov models," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. Yash Babar & Gordon Burtch, 2020. "Examining the Heterogeneous Impact of Ride-Hailing Services on Public Transit Use," Information Systems Research, INFORMS, vol. 31(3), pages 820-834, September.
    3. Hall, Jonathan D. & Palsson, Craig & Price, Joseph, 2018. "Is Uber a substitute or complement for public transit?," Journal of Urban Economics, Elsevier, vol. 108(C), pages 36-50.
    4. Piet Bovy & Sascha Hoogendoorn-Lanser, 2005. "Modelling route choice behaviour in multi-modal transport networks," Transportation, Springer, vol. 32(4), pages 341-368, July.
    5. Habib, Khandker Nurul, 2019. "Mode choice modelling for hailable rides: An investigation of the competition of Uber with other modes by using an integrated non-compensatory choice model with probabilistic choice set formation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 205-216.
    6. Rick Grahn & Sean Qian & H. Scott Matthews & Chris Hendrickson, 2021. "Are travelers substituting between transportation network companies (TNC) and public buses? A case study in Pittsburgh," Transportation, Springer, vol. 48(2), pages 977-1005, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasnine, Md Sami & Hawkins, Jason & Habib, Khandker Nurul, 2021. "Effects of built environment and weather on demands for transportation network company trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 171-185.
    2. Zhang, Zhaolin & Zhai, Guocong & Xie, Kun & Xiao, Feng, 2022. "Exploring the nonlinear effects of ridesharing on public transit usage: A case study of San Diego," Journal of Transport Geography, Elsevier, vol. 104(C).
    3. Brown, Anne, 2022. "Not all fees are created equal: Equity implications of ride-hail fee structures and revenues," Transport Policy, Elsevier, vol. 125(C), pages 1-10.
    4. Lee, Yongsung & Lee, Bumsoo, 2022. "What’s eating public transit in the United States? Reasons for declining transit ridership in the 2010s," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 126-143.
    5. Tian, Guang & Ewing, Reid & Li, Han, 2023. "Exploring the influences of ride-hailing services on VMT and transit usage – Evidence from California," Journal of Transport Geography, Elsevier, vol. 110(C).
    6. Barajas, Jesus M. & Brown, Anne, 2021. "Not minding the gap: Does ride-hailing serve transit deserts?," Journal of Transport Geography, Elsevier, vol. 90(C).
    7. Brown, Anne, 2021. "Not All Fees are Created Equal: Equity Implications of Ride-hail Fee Structures," OSF Preprints cpsqu, Center for Open Science.
    8. Ngo, Nicole S. & Götschi, Thomas & Clark, Benjamin Y., 2021. "The effects of ride-hailing services on bus ridership in a medium-sized urban area using micro-level data: Evidence from the Lane Transit District," Transport Policy, Elsevier, vol. 105(C), pages 44-53.
    9. Adam Millard-Ball & Liwei Liu & Whitney Hansen & Drew Cooper & Joe Castiglione, 2023. "Where ridehail drivers go between trips," Transportation, Springer, vol. 50(5), pages 1959-1981, October.
    10. Zgheib, Najib & Abou-Zeid, Maya & Kaysi, Isam, 2020. "Modeling demand for ridesourcing as feeder for high capacity mass transit systems with an application to the planned Beirut BRT," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 70-91.
    11. Maria Vega-Gonzalo & Álvaro Aguilera-García & Juan Gomez & José Manuel Vassallo, 2024. "Traditional taxi, e-hailing or ride-hailing? A GSEM approach to exploring service adoption patterns," Transportation, Springer, vol. 51(4), pages 1239-1278, August.
    12. Quirós, Cipriano & Portela, Javier & Marín, Raquel, 2021. "Differentiated models in the collaborative transport economy: A mixture analysis for Blablacar and Uber," Technology in Society, Elsevier, vol. 67(C).
    13. Aguilera-García, Álvaro & Gomez, Juan & Velázquez, Guillermo & Vassallo, Jose Manuel, 2022. "Ridesourcing vs. traditional taxi services: Understanding users’ choices and preferences in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 161-178.
    14. Ziru Li & Chen Liang & Yili Hong & Zhongju Zhang, 2022. "How Do On‐demand Ridesharing Services Affect Traffic Congestion? The Moderating Role of Urban Compactness," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 239-258, January.
    15. Yang Pan & Liangfei Qiu, 2022. "How Ride‐Sharing Is Shaping Public Transit System: A Counterfactual Estimator Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 906-927, March.
    16. Berger, Thor & Chen, Chinchih & Frey, Carl Benedikt, 2018. "Drivers of disruption? Estimating the Uber effect," European Economic Review, Elsevier, vol. 110(C), pages 197-210.
    17. Rick Grahn & Corey D. Harper & Chris Hendrickson & Zhen Qian & H. Scott Matthews, 2020. "Socioeconomic and usage characteristics of transportation network company (TNC) riders," Transportation, Springer, vol. 47(6), pages 3047-3067, December.
    18. Kuang, Zhonghong & Lian, Zeng & Lien, Jaimie W. & Zheng, Jie, 2020. "Serial and parallel duopoly competition in multi-segment transportation routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    19. Peng, Yisheng & Liu, Jiahui & Li, Fangyou & Cui, Jianqiang & Lu, Yi & Yang, Linchuan, 2024. "Resilience of ride-hailing services in response to air pollution and its association with built-environment and socioeconomic characteristics," Journal of Transport Geography, Elsevier, vol. 120(C).
    20. Itani, Alaa & Klumpenhouwer, Willem & Shalaby, Amer & Hemily, Brendon, 2024. "Guiding principles for integrating on-demand transit into conventional transit networks: A review of literature and practice," Transport Policy, Elsevier, vol. 147(C), pages 183-197.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:16:y:2024:i:3:d:10.1007_s12469-023-00338-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.