IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v84y2019i3d10.1007_s11336-019-09671-8.html
   My bibliography  Save this article

Modeling Dependence Structures for Response Times in a Bayesian Framework

Author

Listed:
  • Konrad Klotzke

    (University of Twente)

  • Jean-Paul Fox

    (University of Twente)

Abstract

A multivariate generalization of the log-normal model for response times is proposed within an innovative Bayesian modeling framework. A novel Bayesian Covariance Structure Model (BCSM) is proposed, where the inclusion of random-effect variables is avoided, while their implied dependencies are modeled directly through an additive covariance structure. This makes it possible to jointly model complex dependencies due to for instance the test format (e.g., testlets, complex constructs), time limits, or features of digitally based assessments. A class of conjugate priors is proposed for the random-effect variance parameters in the BCSM framework. They give support to testing the presence of random effects, reduce boundary effects by allowing non-positive (co)variance parameters, and support accurate estimation even for very small true variance parameters. The conjugate priors under the BCSM lead to efficient posterior computation. Bayes factors and the Bayesian Information Criterion are discussed for the purpose of model selection in the new framework. In two simulation studies, a satisfying performance of the MCMC algorithm and of the Bayes factor is shown. In comparison with parameter expansion through a half-Cauchy prior, estimates of variance parameters close to zero show no bias and undercoverage of credible intervals is avoided. An empirical example showcases the utility of the BCSM for response times to test the influence of item presentation formats on the test performance of students in a Latin square experimental design.

Suggested Citation

  • Konrad Klotzke & Jean-Paul Fox, 2019. "Modeling Dependence Structures for Response Times in a Bayesian Framework," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 649-672, September.
  • Handle: RePEc:spr:psycho:v:84:y:2019:i:3:d:10.1007_s11336-019-09671-8
    DOI: 10.1007/s11336-019-09671-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-019-09671-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-019-09671-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loeys, Tom & Legrand, Catherine & Schettino, Antonio & Pourtois, Gilles, 2014. "Semi-parametric proportional hazards models with crossed random effects for psychometric response times," LIDAM Reprints ISBA 2014035, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Jean-Paul Fox & Joris Mulder & Sandip Sinharay, 2017. "Bayes Factor Covariance Testing in Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 979-1006, December.
    3. Pryseley, Assam & Tchonlafi, Clotaire & Verbeke, Geert & Molenberghs, Geert, 2011. "Estimating negative variance components from Gaussian and non-Gaussian data: A mixed models approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1071-1085, February.
    4. Simon N. Wood, 2013. "A simple test for random effects in regression models," Biometrika, Biometrika Trust, vol. 100(4), pages 1005-1010.
    5. Wim van der Linden, 2007. "A Hierarchical Framework for Modeling Speed and Accuracy on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 287-308, September.
    6. Faes, Christel & Molenberghs, Geert & Aerts, Marc & Verbeke, Geert & Kenward, Michael G., 2009. "The Effective Sample Size and an Alternative Small-Sample Degrees-of-Freedom Method," The American Statistician, American Statistical Association, vol. 63(4), pages 389-399.
    7. Perrakis, Konstantinos & Ntzoufras, Ioannis & Tsionas, Efthymios G., 2014. "On the use of marginal posteriors in marginal likelihood estimation via importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 54-69.
    8. William J. Browne & Fiona Steele & Mousa Golalizadeh & Martin J. Green, 2009. "The use of simple reparameterizations to improve the efficiency of Markov chain Monte Carlo estimation for multilevel models with applications to discrete time survival models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 579-598, June.
    9. Fox, Jean-Paul & Entink, Rinke Klein & van der Linden, Wilm, 2007. "Modeling of Responses and Response Times with the Package cirt," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i07).
    10. Overholser, Rosanna & Xu, Ronghui, 2014. "Effective degrees of freedom and its application to conditional AIC for linear mixed-effects models with correlated error structures," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 160-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Paul Fox & Jeremias Wenzel & Konrad Klotzke, 2021. "The Bayesian Covariance Structure Model for Testlets," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 219-243, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renske E. Kuijpers & Ingmar Visser & Dylan Molenaar, 2021. "Testing the Within-State Distribution in Mixture Models for Responses and Response Times," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 348-373, June.
    2. Wim J. van der Linden, 2009. "A Bivariate Lognormal Response-Time Model for the Detection of Collusion Between Test Takers," Journal of Educational and Behavioral Statistics, , vol. 34(3), pages 378-394, September.
    3. Shaw, Amy & Elizondo, Fabian & Wadlington, Patrick L., 2020. "Reasoning, fast and slow: How noncognitive factors may alter the ability-speed relationship," Intelligence, Elsevier, vol. 83(C).
    4. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    5. M. Marsman & H. Sigurdardóttir & M. Bolsinova & G. Maris, 2019. "Characterizing the Manifest Probability Distributions of Three Latent Trait Models for Accuracy and Response Time," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 870-891, September.
    6. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.
    7. Bellelli, Francesco S. & Scarpa, Riccardo & Aftab, Ashar, 2023. "An empirical analysis of participation in international environmental agreements," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    8. Steven Andrew Culpepper & James Joseph Balamuta, 2017. "A Hierarchical Model for Accuracy and Choice on Standardized Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 820-845, September.
    9. Edison M. Choe & Jinming Zhang & Hua-Hua Chang, 2018. "Sequential Detection of Compromised Items Using Response Times in Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 650-673, September.
    10. Hasler Mario, 2013. "Multiple Contrasts for Repeated Measures," The International Journal of Biostatistics, De Gruyter, vol. 9(1), pages 49-61, July.
    11. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    12. Acosta, Jonathan & Alegría, Alfredo & Osorio, Felipe & Vallejos, Ronny, 2021. "Assessing the effective sample size for large spatial datasets: A block likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    13. María José Lombardía & Esther López‐Vizcaíno & Cristina Rueda, 2017. "Mixed generalized Akaike information criterion for small area models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1229-1252, October.
    14. repec:jss:jstsof:20:i01 is not listed on IDEAS
    15. Patel, Pankaj C. & Tsionas, Mike & Oghazi, Pejvak & Izquierdo, Vanessa, 2022. "No entrepreneur steps in the same river twice: Limited learning advantage for serial entrepreneurs," Journal of Business Research, Elsevier, vol. 142(C), pages 1038-1052.
    16. Sora Lee & Daniel M. Bolt, 2018. "Asymmetric Item Characteristic Curves and Item Complexity: Insights from Simulation and Real Data Analyses," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 453-475, June.
    17. de Leeuw, Jan & Mair, Patrick, 2007. "An Introduction to the Special Volume on "Psychometrics in R"," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i01).
    18. repec:jss:jstsof:36:c01 is not listed on IDEAS
    19. Yi-Hsuan Lee & Zhiliang Ying, 2015. "A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 748-775, September.
    20. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    21. Frederik Coomans & Abe Hofman & Matthieu Brinkhuis & Han L J van der Maas & Gunter Maris, 2016. "Distinguishing Fast and Slow Processes in Accuracy - Response Time Data," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    22. Jean-Paul Fox & Joris Mulder & Sandip Sinharay, 2017. "Bayes Factor Covariance Testing in Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 979-1006, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:84:y:2019:i:3:d:10.1007_s11336-019-09671-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.