IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v78y2013i3p538-544.html
   My bibliography  Save this article

A Note on the Hierarchical Model for Responses and Response Times in Tests of van der Linden (2007)

Author

Listed:
  • Jochen Ranger

Abstract

Findings suggest that in psychological tests not only the responses but also the times needed to give the responses are related to characteristics of the test taker. This observation has stimulated the development of latent trait models for the joint distribution of the responses and the response times. Such models are motivated by the hope to improve the estimation of the latent traits by additionally considering response time. In this article, the potential relevance of the response times for psychological assessment is explored for the model of van der Linden (Psychometrika 72:287–308, 2007 ) that seems to have become the standard approach to response time modeling in educational testing. It can be shown that the consideration of response times increases the information of the test. However, one also can prove that the contribution of the response times to the test information is bounded and has a simple limit. Copyright The Psychometric Society 2013

Suggested Citation

  • Jochen Ranger, 2013. "A Note on the Hierarchical Model for Responses and Response Times in Tests of van der Linden (2007)," Psychometrika, Springer;The Psychometric Society, vol. 78(3), pages 538-544, July.
  • Handle: RePEc:spr:psycho:v:78:y:2013:i:3:p:538-544
    DOI: 10.1007/s11336-013-9324-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-013-9324-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-013-9324-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wim Linden & Edith Krimpen-Stoop, 2003. "Using response times to detect aberrant responses in computerized adaptive testing," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 251-265, June.
    2. Wim van der Linden, 2007. "A Hierarchical Framework for Modeling Speed and Accuracy on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 287-308, September.
    3. T. Loeys & Y. Rosseel & K. Baten, 2011. "A Joint Modeling Approach for Reaction Time and Accuracy in Psycholinguistic Experiments," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 487-503, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edison M. Choe & Jinming Zhang & Hua-Hua Chang, 2018. "Sequential Detection of Compromised Items Using Response Times in Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 650-673, September.
    2. Maria Bolsinova & Paul Boeck & Jesper Tijmstra, 2017. "Modelling Conditional Dependence Between Response Time and Accuracy," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1126-1148, December.
    3. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    4. Chun Wang & Gongjun Xu & Zhuoran Shang, 2018. "A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 223-254, March.
    5. Hongyue Zhu & Hong Jiao & Wei Gao & Xiangbin Meng, 2023. "Bayesian Change-Point Analysis Approach to Detecting Aberrant Test-Taking Behavior Using Response Times," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 490-520, August.
    6. Hyeon-Ah Kang & Yi Zheng & Hua-Hua Chang, 2020. "Online Calibration of a Joint Model of Item Responses and Response Times in Computerized Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 45(2), pages 175-208, April.
    7. Steven Andrew Culpepper & James Joseph Balamuta, 2017. "A Hierarchical Model for Accuracy and Choice on Standardized Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 820-845, September.
    8. Inhan Kang & Paul Boeck & Roger Ratcliff, 2022. "Modeling Conditional Dependence of Response Accuracy and Response Time with the Diffusion Item Response Theory Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 725-748, June.
    9. Chun Wang, 2015. "On Latent Trait Estimation in Multidimensional Compensatory Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 428-449, June.
    10. Jeffrey Rouder & Jordan Province & Richard Morey & Pablo Gomez & Andrew Heathcote, 2015. "The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 491-513, June.
    11. Steffi Pohl & Esther Ulitzsch & Matthias Davier, 2019. "Using Response Times to Model Not-Reached Items due to Time Limits," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 892-920, September.
    12. T Gonzalez & M A de la Rubia & K P Hincz & M Comas-Lopez & Laia Subirats & Santi Fort & G M Sacha, 2020. "Influence of COVID-19 confinement on students’ performance in higher education," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-23, October.
    13. Shaw, Amy & Elizondo, Fabian & Wadlington, Patrick L., 2020. "Reasoning, fast and slow: How noncognitive factors may alter the ability-speed relationship," Intelligence, Elsevier, vol. 83(C).
    14. Sora Lee & Daniel M. Bolt, 2018. "Asymmetric Item Characteristic Curves and Item Complexity: Insights from Simulation and Real Data Analyses," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 453-475, June.
    15. Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias Davier, 2022. "A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 593-619, June.
    16. Peter W. Rijn & Usama S. Ali, 2018. "A Generalized Speed–Accuracy Response Model for Dichotomous Items," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 109-131, March.
    17. Yi-Hsuan Lee & Zhiliang Ying, 2015. "A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 748-775, September.
    18. Frederik Coomans & Abe Hofman & Matthieu Brinkhuis & Han L J van der Maas & Gunter Maris, 2016. "Distinguishing Fast and Slow Processes in Accuracy - Response Time Data," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    19. Susu Zhang & Zhi Wang & Jitong Qi & Jingchen Liu & Zhiliang Ying, 2023. "Accurate Assessment via Process Data," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 76-97, March.
    20. Minjeong Jeon & Paul Boeck & Xiangrui Li & Zhong-Lin Lu, 2020. "Trivariate Theory of Mind Data Analysis with a Conditional Joint Modeling Approach," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 398-436, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:78:y:2013:i:3:p:538-544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.