IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v75y2010i2p209-227.html
   My bibliography  Save this article

Reporting of Subscores Using Multidimensional Item Response Theory

Author

Listed:
  • Shelby Haberman
  • Sandip Sinharay

Abstract

No abstract is available for this item.

Suggested Citation

  • Shelby Haberman & Sandip Sinharay, 2010. "Reporting of Subscores Using Multidimensional Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 209-227, June.
  • Handle: RePEc:spr:psycho:v:75:y:2010:i:2:p:209-227
    DOI: 10.1007/s11336-010-9158-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-010-9158-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-010-9158-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. Stephen Schilling & R. Bock, 2005. "High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 533-555, September.
    4. Shelby J. Haberman, 2008. "When Can Subscores Have Value?," Journal of Educational and Behavioral Statistics, , vol. 33(2), pages 204-229, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascal Jordan, 2023. "On Reverse Shrinkage Effects and Shrinkage Overshoot," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 274-301, March.
    2. Shenghai Dai & Dubravka Svetina & Xiaolin Wang, 2017. "Reporting Subscores Using R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 617-638, October.
    3. Walter Peter Vispoel & Hyeryung Lee & Tingting Chen, 2024. "Multivariate Structural Equation Modeling Techniques for Estimating Reliability, Measurement Error, and Subscale Viability When Using Both Composite and Subscale Scores in Practice," Mathematics, MDPI, vol. 12(8), pages 1-25, April.
    4. Lili Yao & Shelby J. Haberman & Mo Zhang, 2019. "Penalized Best Linear Prediction of True Test Scores," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 186-211, March.
    5. Chun Wang, 2014. "Improving Measurement Precision of Hierarchical Latent Traits Using Adaptive Testing," Journal of Educational and Behavioral Statistics, , vol. 39(6), pages 452-477, December.
    6. Lihua Yao, 2012. "Multidimensional CAT Item Selection Methods for Domain Scores and Composite Scores: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 495-523, July.
    7. Frank Rijmen & Minjeong Jeon & Matthias von Davier & Sophia Rabe-Hesketh, 2014. "A Third-Order Item Response Theory Model for Modeling the Effects of Domains and Subdomains in Large-Scale Educational Assessment Surveys," Journal of Educational and Behavioral Statistics, , vol. 39(4), pages 235-256, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    2. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
    4. Li Cai, 2010. "Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 35(3), pages 307-335, June.
    5. Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.
    6. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    7. Vitoratou, Silia & Ntzoufras, Ioannis & Moustaki, Irini, 2016. "Explaining the behavior of joint and marginal Monte Carlo estimators in latent variable models with independence assumptions," LSE Research Online Documents on Economics 57685, London School of Economics and Political Science, LSE Library.
    8. Björn Andersson & Tao Xin, 2021. "Estimation of Latent Regression Item Response Theory Models Using a Second-Order Laplace Approximation," Journal of Educational and Behavioral Statistics, , vol. 46(2), pages 244-265, April.
    9. Yang Liu, 2020. "A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 439-468, June.
    10. Christian A. Gregory, 2020. "Are We Underestimating Food Insecurity? Partial Identification with a Bayesian 4-Parameter IRT Model," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 632-655, October.
    11. Gregory Camilli & Jean-Paul Fox, 2015. "An Aggregate IRT Procedure for Exploratory Factor Analysis," Journal of Educational and Behavioral Statistics, , vol. 40(4), pages 377-401, August.
    12. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    13. An, Xinming & Bentler, Peter M., 2012. "Efficient direct sampling MCEM algorithm for latent variable models with binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 231-244.
    14. Chanjin Zheng & Shaoyang Guo & Justin L Kern, 2021. "Fast Bayesian Estimation for the Four-Parameter Logistic Model (4PLM)," SAGE Open, , vol. 11(4), pages 21582440211, October.
    15. Wu, Jianmin & Bentler, Peter M., 2013. "Limited information estimation in binary factor analysis: A review and extension," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 392-403.
    16. Yang Liu & Jan Hannig, 2017. "Generalized Fiducial Inference for Logistic Graded Response Models," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1097-1125, December.
    17. Yang Liu & Ji Seung Yang, 2018. "Bootstrap-Calibrated Interval Estimates for Latent Variable Scores in Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 333-354, June.
    18. Sheng, Yanyan, 2008. "Markov Chain Monte Carlo Estimation of Normal Ogive IRT Models in MATLAB," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i08).
    19. Anders Skrondal & Sophia Rabe‐Hesketh, 2009. "Prediction in multilevel generalized linear models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(3), pages 659-687, June.
    20. Bianconcini, Silvia & Cagnone, Silvia, 2012. "Estimation of generalized linear latent variable models via fully exponential Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 183-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:75:y:2010:i:2:p:209-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.