IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v64y1999i3p317-324.html
   My bibliography  Save this article

Retrieving the correlation matrix from a truncated PCA solution: The inverse principal component problem

Author

Listed:
  • Jos Berge
  • Henk Kiers

Abstract

No abstract is available for this item.

Suggested Citation

  • Jos Berge & Henk Kiers, 1999. "Retrieving the correlation matrix from a truncated PCA solution: The inverse principal component problem," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 317-324, September.
  • Handle: RePEc:spr:psycho:v:64:y:1999:i:3:p:317-324
    DOI: 10.1007/BF02294298
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294298
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis Guttman, 1958. "To what extent can communalities reduce rank?," Psychometrika, Springer;The Psychometric Society, vol. 23(4), pages 297-308, December.
    2. Walter Ledermann, 1937. "On the rank of the reduced correlational matrix in multiple-factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 2(2), pages 85-93, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Bekker & Jan Leeuw, 1987. "The rank of reduced dispersion matrices," Psychometrika, Springer;The Psychometric Society, vol. 52(1), pages 125-135, March.
    2. Kinkyo, Takuji, 2021. "Region-wide connectedness of Asian equity and currency markets," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    3. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    4. Papastamoulis, Panagiotis, 2018. "Overfitting Bayesian mixtures of factor analyzers with an unknown number of components," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 220-234.
    5. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Lorenzo Finesso & Peter Spreij, 2016. "Factor analysis models via I-divergence optimization," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 702-726, September.
    7. Takuji Kinkyo, 2022. "Hedging capabilities of Bitcoin for Asian currencies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1769-1784, April.
    8. Monia Ranalli & Roberto Rocci, 2024. "Composite likelihood methods for parsimonious model-based clustering of mixed-type data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 381-407, June.
    9. Harold Bechtoldt, 1961. "An empirical study of the factor analysis stability hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 26(4), pages 405-432, December.
    10. Kaufmann, Sylvia & Schumacher, Christian, 2019. "Bayesian estimation of sparse dynamic factor models with order-independent and ex-post mode identification," Journal of Econometrics, Elsevier, vol. 210(1), pages 116-134.
    11. Wan-Lun Wang & Tsung-I Lin, 2020. "Automated learning of mixtures of factor analysis models with missing information," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 1098-1124, December.
    12. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    13. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    14. Joachim Büschken & Thomas Otter & Greg M. Allenby, 2013. "The Dimensionality of Customer Satisfaction Survey Responses and Implications for Driver Analysis," Marketing Science, INFORMS, vol. 32(4), pages 533-553, July.
    15. García-Escudero, Luis Angel & Gordaliza, Alfonso & Greselin, Francesca & Ingrassia, Salvatore & Mayo-Iscar, Agustín, 2016. "The joint role of trimming and constraints in robust estimation for mixtures of Gaussian factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 131-147.
    16. Wang, Wan-Lun & Castro, Luis M. & Lin, Tsung-I, 2017. "Automated learning of t factor analysis models with complete and incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 157-171.
    17. Kinkyo, Takuji, 2022. "The intermediating role of the Chinese renminbi in Asian currency markets: Evidence from partial wavelet coherence," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    18. Wan-Lun Wang & Tsung-I Lin, 2023. "Model-based clustering via mixtures of unrestricted skew normal factor analyzers with complete and incomplete data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 787-817, September.
    19. Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.
    20. Benjamin Williams, 2018. "Identification of the Linear Factor Model," Working Papers 2018-002, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:64:y:1999:i:3:p:317-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.