IDEAS home Printed from https://ideas.repec.org/a/spr/pharmo/v7y2023i3d10.1007_s41669-023-00391-5.html
   My bibliography  Save this article

Impact of Extrapolation Model Choices on the Structural Uncertainty in Economic Evaluations for Cancer Immunotherapy: A Case Study of Checkmate 067

Author

Listed:
  • Taihang Shao

    (China Pharmaceutical University
    China Pharmaceutical University)

  • Mingye Zhao

    (China Pharmaceutical University
    China Pharmaceutical University)

  • Leyi Liang

    (China Pharmaceutical University
    China Pharmaceutical University)

  • Lizheng Shi

    (Tulane University)

  • Wenxi Tang

    (China Pharmaceutical University
    China Pharmaceutical University)

Abstract

Objectives The aim of this study was to compare the performance of different extrapolation modeling techniques and analyze their impact on structural uncertainties in the economic evaluations of cancer immunotherapy. Methods The individual patient data was reconstructed through published Checkmate 067 Kaplan Meier curves. Standard parametric models and six flexible techniques were tested, including fractional polynomial, restricted cubic splines, Royston–Parmar models, generalized additive models, parametric mixture models, and mixture cure models. Mean square errors (MSE) and bias from raw survival plots were used to test the model fitness and extrapolation performance. Variability of estimated incremental cost-effectiveness ratios (ICERs) from different models was used to inform the structural uncertainty in economic evaluations. All indicators were analyzed and compared under cut-offs of 3 years and 6.5 years, respectively, to further discuss model impact under different data maturity. R Codes for reproducing this study can be found on GitHub. Results The flexible techniques in general performed better than standard parametric models with smaller MSE irrespective of the data maturity. Survival outcomes projected by long-term extrapolation using immature data differed from those with mature data. Although a best-performing model was not found because several models had very similar MSE in this case, the variability of modeled ICERs significantly increased when prolonging simulation cycles. Conclusions Flexible techniques show better performance in the case of Checkmate 067, regardless of data maturity. Model choices affect ICERs of cancer immunotherapy, especially when dealing with immature survival data. When researchers lack evidence to identify the ‘right’ model, we recommend identifying and revealing the model impacts on structural uncertainty.

Suggested Citation

  • Taihang Shao & Mingye Zhao & Leyi Liang & Lizheng Shi & Wenxi Tang, 2023. "Impact of Extrapolation Model Choices on the Structural Uncertainty in Economic Evaluations for Cancer Immunotherapy: A Case Study of Checkmate 067," PharmacoEconomics - Open, Springer, vol. 7(3), pages 383-392, May.
  • Handle: RePEc:spr:pharmo:v:7:y:2023:i:3:d:10.1007_s41669-023-00391-5
    DOI: 10.1007/s41669-023-00391-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41669-023-00391-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s41669-023-00391-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patricia Guyot & Anthony E. Ades & Matthew Beasley & Béranger Lueza & Jean-Pierre Pignon & Nicky J. Welton, 2017. "Extrapolation of Survival Curves from Cancer Trials Using External Information," Medical Decision Making, , vol. 37(4), pages 353-366, May.
    2. Daniel Gallacher & Peter Kimani & Nigel Stallard, 2021. "Extrapolating Parametric Survival Models in Health Technology Assessment: A Simulation Study," Medical Decision Making, , vol. 41(1), pages 37-50, January.
    3. Daniel Gallacher & Peter Kimani & Nigel Stallard, 2021. "Extrapolating Parametric Survival Models in Health Technology Assessment Using Model Averaging: A Simulation Study," Medical Decision Making, , vol. 41(4), pages 476-484, May.
    4. Jodi Gray & Thomas Sullivan & Nicholas R. Latimer & Amy Salter & Michael J. Sorich & Robyn L. Ward & Jonathan Karnon, 2021. "Extrapolation of Survival Curves Using Standard Parametric Models and Flexible Parametric Spline Models: Comparisons in Large Registry Cohorts with Advanced Cancer," Medical Decision Making, , vol. 41(2), pages 179-193, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathyn Vervaart & Mark Strong & Karl P. Claxton & Nicky J. Welton & Torbjørn Wisløff & Eline Aas, 2022. "An Efficient Method for Computing Expected Value of Sample Information for Survival Data from an Ongoing Trial," Medical Decision Making, , vol. 42(5), pages 612-625, July.
    2. Daniel Gallacher & Peter Kimani & Nigel Stallard, 2022. "Biased Survival Predictions When Appraising Health Technologies in Heterogeneous Populations," PharmacoEconomics, Springer, vol. 40(1), pages 109-120, January.
    3. Zhaojing Che & Nathan Green & Gianluca Baio, 2023. "Blended Survival Curves: A New Approach to Extrapolation for Time-to-Event Outcomes from Clinical Trials in Health Technology Assessment," Medical Decision Making, , vol. 43(3), pages 299-310, April.
    4. Lin-Yen Wang & Tsair-Wei Chien & Willy Chou, 2021. "Using the IPcase Index with Inflection Points and the Corresponding Case Numbers to Identify the Impact Hit by COVID-19 in China: An Observation Study," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    5. Alexina J. Mason & Manuel Gomes & James Carpenter & Richard Grieve, 2021. "Flexible Bayesian longitudinal models for cost‐effectiveness analyses with informative missing data," Health Economics, John Wiley & Sons, Ltd., vol. 30(12), pages 3138-3158, December.
    6. M. A. Chaudhary & M. Edmondson-Jones & G. Baio & E. Mackay & J. R. Penrod & D. J. Sharpe & G. Yates & S. Rafiq & K. Johannesen & M. K. Siddiqui & J. Vanderpuye-Orgle & A. Briggs, 2023. "Use of Advanced Flexible Modeling Approaches for Survival Extrapolation from Early Follow-up Data in two Nivolumab Trials in Advanced NSCLC with Extended Follow-up," Medical Decision Making, , vol. 43(1), pages 91-109, January.
    7. Philip Cooney & Arthur White, 2023. "Direct Incorporation of Expert Opinion into Parametric Survival Models to Inform Survival Extrapolation," Medical Decision Making, , vol. 43(3), pages 325-336, April.
    8. M. Campioni & I. Agirrezabal & R. Hajek & J. Minarik & L. Pour & I. Spicka & S. Gonzalez-McQuire & P. Jandova & V. Maisnar, 2020. "Methodology and results of real-world cost-effectiveness of carfilzomib in combination with lenalidomide and dexamethasone in relapsed multiple myeloma using registry data," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(2), pages 219-233, March.
    9. Nicholas R. Latimer & Kurt Taylor & Anthony J. Hatswell & Sophia Ho & Gabriel Okorogheye & Clara Chen & Inkyu Kim & John Borrill & David Bertwistle, 2024. "An Evaluation of an Algorithm for the Selection of Flexible Survival Models for Cancer Immunotherapies: Pass or Fail?," PharmacoEconomics, Springer, vol. 42(12), pages 1395-1412, December.
    10. Ash Bullement & Mark Edmondson-Jones & Patricia Guyot & Nicky J. Welton & Gianluca Baio & Matthew Stevenson & Nicholas R. Latimer, 2024. "MPES-R: Multi-Parameter Evidence Synthesis in R for Survival Extrapolation—A Tutorial," PharmacoEconomics, Springer, vol. 42(12), pages 1317-1327, December.
    11. Andreas Freitag & Grammati Sarri & An Ta & Laura Gurskyte & Dasha Cherepanov & Luis G. Hernandez, 2024. "A Systematic Review of Modeling Approaches to Evaluate Treatments for Relapsed Refractory Multiple Myeloma: Critical Review and Considerations for Future Health Economic Models," PharmacoEconomics, Springer, vol. 42(9), pages 955-1002, September.
    12. Ash Bullement & Matthew D. Stevenson & Gianluca Baio & Gemma E. Shields & Nicholas R. Latimer, 2023. "A Systematic Review of Methods to Incorporate External Evidence into Trial-Based Survival Extrapolations for Health Technology Assessment," Medical Decision Making, , vol. 43(5), pages 610-620, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharmo:v:7:y:2023:i:3:d:10.1007_s41669-023-00391-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.