IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v43y2023i1p91-109.html
   My bibliography  Save this article

Use of Advanced Flexible Modeling Approaches for Survival Extrapolation from Early Follow-up Data in two Nivolumab Trials in Advanced NSCLC with Extended Follow-up

Author

Listed:
  • M. A. Chaudhary

    (Bristol-Myers Squibb, Princeton, NJ, USA)

  • M. Edmondson-Jones

    (Parexel International Corp, London, UK)

  • G. Baio

    (University College London, London, UK)

  • E. Mackay

    (Cytel Inc., Toronto, Canada)

  • J. R. Penrod

    (Bristol-Myers Squibb, Princeton, NJ, USA)

  • D. J. Sharpe

    (Parexel International Corp, London, UK)

  • G. Yates

    (Parexel International Corp, London, UK)

  • S. Rafiq

    (Parexel International Corp, London, UK)

  • K. Johannesen

    (Bristol-Myers Squibb, Stockholm, Sweden)

  • M. K. Siddiqui

    (Parexel International Corp, Chandigarh, India)

  • J. Vanderpuye-Orgle

    (Parexel International Corp, MA, USA)

  • A. Briggs

    (London School of Hygiene and Tropical Medicine, London, UK)

Abstract

Objectives Immuno-oncology (IO) therapies are often associated with delayed responses that are deep and durable, manifesting as long-term survival benefits in patients with metastatic cancer. Complex hazard functions arising from IO treatments may limit the accuracy of extrapolations from standard parametric models (SPMs). We evaluated the ability of flexible parametric models (FPMs) to improve survival extrapolations using data from 2 trials involving patients with non–small-cell lung cancer (NSCLC). Methods Our analyses used consecutive database locks (DBLs) at 2-, 3-, and 5-y minimum follow-up from trials evaluating nivolumab versus docetaxel in patients with pretreated metastatic squamous (CheckMate-017) and nonsquamous (CheckMate-057) NSCLC. For each DBL, SPMs, as well as 3 FPMs—landmark response models (LRMs), mixture cure models (MCMs), and Bayesian multiparameter evidence synthesis (B-MPES)—were estimated on nivolumab overall survival (OS). The performance of each parametric model was assessed by comparing milestone restricted mean survival times (RMSTs) and survival probabilities with results obtained from externally validated SPMs. Results For the 2- and 3-y DBLs of both trials, all models tended to underestimate 5-y OS. Predictions from nonvalidated SPMs fitted to the 2-y DBLs were highly unreliable, whereas extrapolations from FPMs were much more consistent between models fitted to successive DBLs. For CheckMate-017, in which an apparent survival plateau emerges in the 3-y DBL, MCMs fitted to this DBL estimated 5-y OS most accurately (11.6% v. 12.3% observed), and long-term predictions were similar to those from the 5-y validated SPM (20-y RMST: 30.2 v. 30.5 mo). For CheckMate-057, where there is no clear evidence of a survival plateau in the early DBLs, only B-MPES was able to accurately predict 5-y OS (14.1% v. 14.0% observed [3-y DBL]). Conclusions We demonstrate that the use of FPMs for modeling OS in NSCLC patients from early follow-up data can yield accurate estimates for RMST observed with longer follow-up and provide similar long-term extrapolations to externally validated SPMs based on later data cuts. B-MPES generated reasonable predictions even when fitted to the 2-y DBLs of the studies, whereas MCMs were more reliant on longer-term data to estimate a plateau and therefore performed better from 3 y. Generally, LRM extrapolations were less reliable than those from alternative FPMs and validated SPMs but remained superior to nonvalidated SPMs. Our work demonstrates the potential benefits of using advanced parametric models that incorporate external data sources, such as B-MPES and MCMs, to allow for accurate evaluation of treatment clinical and cost-effectiveness from trial data with limited follow-up. Highlights Flexible advanced parametric modeling methods can provide improved survival extrapolations for immuno-oncology cost-effectiveness in health technology assessments from early clinical trial data that better anticipate extended follow-up. Advantages include leveraging additional observable trial data, the systematic integration of external data, and more detailed modeling of underlying processes. Bayesian multiparameter evidence synthesis performed particularly well, with well-matched external data. Mixture cure models also performed well but may require relatively longer follow-up to identify an emergent plateau, depending on the specific setting. Landmark response models offered marginal benefits in this scenario and may require greater numbers in each response group and/or increased follow-up to support improved extrapolation within each subgroup.

Suggested Citation

  • M. A. Chaudhary & M. Edmondson-Jones & G. Baio & E. Mackay & J. R. Penrod & D. J. Sharpe & G. Yates & S. Rafiq & K. Johannesen & M. K. Siddiqui & J. Vanderpuye-Orgle & A. Briggs, 2023. "Use of Advanced Flexible Modeling Approaches for Survival Extrapolation from Early Follow-up Data in two Nivolumab Trials in Advanced NSCLC with Extended Follow-up," Medical Decision Making, , vol. 43(1), pages 91-109, January.
  • Handle: RePEc:sae:medema:v:43:y:2023:i:1:p:91-109
    DOI: 10.1177/0272989X221132257
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X221132257
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X221132257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ben Rothwell & Christopher Kiff & Caroline Ling & Thor-Henrik Brodtkorb, 2021. "Cost Effectiveness of Nivolumab in Patients with Advanced, Previously Treated Squamous and Non-squamous Non-small-cell Lung Cancer in England," PharmacoEconomics - Open, Springer, vol. 5(2), pages 251-260, June.
    2. Patricia Guyot & Anthony E. Ades & Matthew Beasley & Béranger Lueza & Jean-Pierre Pignon & Nicky J. Welton, 2017. "Extrapolation of Survival Curves from Cancer Trials Using External Information," Medical Decision Making, , vol. 37(4), pages 353-366, May.
    3. Adrian Vickers, 2019. "An Evaluation of Survival Curve Extrapolation Techniques Using Long-Term Observational Cancer Data," Medical Decision Making, , vol. 39(8), pages 926-938, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaojing Che & Nathan Green & Gianluca Baio, 2023. "Blended Survival Curves: A New Approach to Extrapolation for Time-to-Event Outcomes from Clinical Trials in Health Technology Assessment," Medical Decision Making, , vol. 43(3), pages 299-310, April.
    2. Taihang Shao & Mingye Zhao & Leyi Liang & Lizheng Shi & Wenxi Tang, 2023. "Impact of Extrapolation Model Choices on the Structural Uncertainty in Economic Evaluations for Cancer Immunotherapy: A Case Study of Checkmate 067," PharmacoEconomics - Open, Springer, vol. 7(3), pages 383-392, May.
    3. M. Campioni & I. Agirrezabal & R. Hajek & J. Minarik & L. Pour & I. Spicka & S. Gonzalez-McQuire & P. Jandova & V. Maisnar, 2020. "Methodology and results of real-world cost-effectiveness of carfilzomib in combination with lenalidomide and dexamethasone in relapsed multiple myeloma using registry data," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(2), pages 219-233, March.
    4. Daniel Gallacher & Peter Kimani & Nigel Stallard, 2022. "Biased Survival Predictions When Appraising Health Technologies in Heterogeneous Populations," PharmacoEconomics, Springer, vol. 40(1), pages 109-120, January.
    5. Alexina J. Mason & Manuel Gomes & James Carpenter & Richard Grieve, 2021. "Flexible Bayesian longitudinal models for cost‐effectiveness analyses with informative missing data," Health Economics, John Wiley & Sons, Ltd., vol. 30(12), pages 3138-3158, December.
    6. Ash Bullement & Matthew D. Stevenson & Gianluca Baio & Gemma E. Shields & Nicholas R. Latimer, 2023. "A Systematic Review of Methods to Incorporate External Evidence into Trial-Based Survival Extrapolations for Health Technology Assessment," Medical Decision Making, , vol. 43(5), pages 610-620, July.
    7. Daniel Gallacher & Peter Kimani & Nigel Stallard, 2021. "Extrapolating Parametric Survival Models in Health Technology Assessment: A Simulation Study," Medical Decision Making, , vol. 41(1), pages 37-50, January.
    8. Philip Cooney & Arthur White, 2023. "Direct Incorporation of Expert Opinion into Parametric Survival Models to Inform Survival Extrapolation," Medical Decision Making, , vol. 43(3), pages 325-336, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:43:y:2023:i:1:p:91-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.