IDEAS home Printed from https://ideas.repec.org/a/spr/pharme/v35y2017i12d10.1007_s40273-017-0587-0.html
   My bibliography  Save this article

Economic Evaluation of Implementing a Novel Pharmacogenomic Test (IDgenetix®) to Guide Treatment of Patients with Depression and/or Anxiety

Author

Listed:
  • Mehdi Najafzadeh

    (Brigham and Women’s Hospital and Harvard Medical School)

  • Jorge A. Garces

    (AltheaDx)

  • Alejandra Maciel

    (AltheaDx)

Abstract

Background The response to therapeutics varies widely in patients with depression and anxiety, making selection of an optimal treatment choice challenging. IDgenetix®, a novel pharmacogenomic test, has been shown to improve outcomes by predicting the likelihood of response to different psychotherapeutic medications. Objective The objective of this study was to estimate the cost effectiveness of implementing a novel pharmacogenomic test (IDgenetix®) to guide treatment choices in patients with depression and/or anxiety compared with treatment as usual from the US societal perspective. Methods We developed a discrete event simulation to compare clinical events, quality-adjusted life-years, and costs of the two treatment strategies. Target patients had a Hamilton Rating Scale for Depression Score ≥ 20 and/or a Hamilton Rating Scale for Anxiety score ≥ 18 at baseline. Remission, response, and no response were simulated based on the observed rates in the IDgenetix® randomized controlled trial. Quality-adjusted life-years and direct and indirect costs attributable to depression and anxiety were estimated and compared over a 3-year time horizon. We conducted extensive deterministic and probabilistic sensitivity analyses to assess the robustness of the results. Results The model predicted cumulative remission rates of 78 and 66% in IDgenetix® and treatment as usual groups, respectively. Estimated discounted quality-adjusted life-years were 2.09 and 1.94 per patient for IDgenetix® and treatment as usual, respectively, which resulted in 0.15 incremental quality-adjusted life-years (95% credible interval 0.04–0.28). The total costs after accounting for a US$2000 test cost were US$14,124 for IDgenetix® compared with US$14,659 for treatment as usual, suggesting a US$535 (95% credible interval − 2902 to 1692) cost saving per patient in the IDgenetix® group. Incremental quality-adjusted life-year gain (0.49) and cost savings (US$6800) were substantially larger in patients with severe depression (Hamilton Rating Scale for Depression score ≥ 25). Conclusion Using the IDgenetix® test to guide the treatment of patients with depression and anxiety may be a dominant strategy, as it improves quality-adjusted life-years and decreases overall costs over a 3-year time horizon.

Suggested Citation

  • Mehdi Najafzadeh & Jorge A. Garces & Alejandra Maciel, 2017. "Economic Evaluation of Implementing a Novel Pharmacogenomic Test (IDgenetix®) to Guide Treatment of Patients with Depression and/or Anxiety," PharmacoEconomics, Springer, vol. 35(12), pages 1297-1310, December.
  • Handle: RePEc:spr:pharme:v:35:y:2017:i:12:d:10.1007_s40273-017-0587-0
    DOI: 10.1007/s40273-017-0587-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40273-017-0587-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40273-017-0587-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karl Claxton & Mark Sculpher & Chris McCabe & Andrew Briggs & Ron Akehurst & Martin Buxton & John Brazier & Tony O'Hagan, 2005. "Probabilistic sensitivity analysis for NICE technology assessment: not an optional extra," Health Economics, John Wiley & Sons, Ltd., vol. 14(4), pages 339-347, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. E. Ades & Karl Claxton & Mark Sculpher, 2006. "Evidence synthesis, parameter correlation and probabilistic sensitivity analysis," Health Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 373-381, April.
    2. Dongzhe Hong & Lei Si & Minghuan Jiang & Hui Shao & Wai-kit Ming & Yingnan Zhao & Yan Li & Lizheng Shi, 2019. "Cost Effectiveness of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors, Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists, and Dipeptidyl Peptidase-4 (DPP-4) Inhibitors: A Systematic Review," PharmacoEconomics, Springer, vol. 37(6), pages 777-818, June.
    3. Pedram Sendi & Huldrych F Günthard & Mathew Simcock & Bruno Ledergerber & Jörg Schüpbach & Manuel Battegay & for the Swiss HIV Cohort Study, 2007. "Cost-Effectiveness of Genotypic Antiretroviral Resistance Testing in HIV-Infected Patients with Treatment Failure," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-8, January.
    4. Isaac Corro Ramos & Maureen P. M. H. Rutten-van Mölken & Maiwenn J. Al, 2013. "The Role of Value-of-Information Analysis in a Health Care Research Priority Setting," Medical Decision Making, , vol. 33(4), pages 472-489, May.
    5. McKenna, Claire & Chalabi, Zaid & Epstein, David & Claxton, Karl, 2010. "Budgetary policies and available actions: A generalisation of decision rules for allocation and research decisions," Journal of Health Economics, Elsevier, vol. 29(1), pages 170-181, January.
    6. Mattias Ekman & Peter Lindgren & Carolin Miltenburger & Genevieve Meier & Julie Locklear & Mary Chatterton, 2012. "Cost Effectiveness of Quetiapine in Patients with Acute Bipolar Depression and in Maintenance Treatment after an Acute Depressive Episode," PharmacoEconomics, Springer, vol. 30(6), pages 513-530, June.
    7. Peter J. Dodd & Debebe Shaweno & Chu-Chang Ku & Philippe Glaziou & Carel Pretorius & Richard J. Hayes & Peter MacPherson & Ted Cohen & Helen Ayles, 2023. "Transmission modeling to infer tuberculosis incidence prevalence and mortality in settings with generalized HIV epidemics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Emma McIntosh, 2006. "Using Discrete Choice Experiments within a Cost-Benefit Analysis Framework," PharmacoEconomics, Springer, vol. 24(9), pages 855-868, September.
    9. John Hutton, 2012. "‘Health Economics’ and the evolution of economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 21(1), pages 13-18, January.
    10. Anna Heath & Petros Pechlivanoglou, 2022. "Prioritizing Research in an Era of Personalized Medicine: The Potential Value of Unexplained Heterogeneity," Medical Decision Making, , vol. 42(5), pages 649-660, July.
    11. Sofia Dias & Alex J. Sutton & Nicky J. Welton & A. E. Ades, 2013. "Evidence Synthesis for Decision Making 6," Medical Decision Making, , vol. 33(5), pages 671-678, July.
    12. Alan Brennan & Stephen E. Chick & Ruth Davies, 2006. "A taxonomy of model structures for economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 15(12), pages 1295-1310, December.
    13. Laura Bojke & Karl Claxton & Stephen Palmer & Mark Sculpher, 2006. "Defining and characterising structural uncertainty in decision analytic models," Working Papers 009cherp, Centre for Health Economics, University of York.
    14. Sun-Young Kim & Louise B. Russell & Anushua Sinha, 2015. "Handling Parameter Uncertainty in Cost-Effectiveness Models Simply and Responsibly," Medical Decision Making, , vol. 35(5), pages 567-569, July.
    15. Nicky J. Welton & Jason J. Madan & Deborah M. Caldwell & Tim J. Peters & Anthony E. Ades, 2014. "Expected Value of Sample Information for Multi-Arm Cluster Randomized Trials with Binary Outcomes," Medical Decision Making, , vol. 34(3), pages 352-365, April.
    16. Anna Heath & Mark Strong & David Glynn & Natalia Kunst & Nicky J. Welton & Jeremy D. Goldhaber-Fiebert, 2022. "Simulating Study Data to Support Expected Value of Sample Information Calculations: A Tutorial," Medical Decision Making, , vol. 42(2), pages 143-155, February.
    17. Nicholas Graves & Mary Courtney & Helen Edwards & Anne Chang & Anthony Parker & Kathleen Finlayson, 2009. "Cost-Effectiveness of an Intervention to Reduce Emergency Re-Admissions to Hospital among Older Patients," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-9, October.
    18. Anthony Newall & Mark Jit & Philippe Beutels, 2012. "Economic Evaluations of Childhood Influenza Vaccination," PharmacoEconomics, Springer, vol. 30(8), pages 647-660, August.
    19. Christopher McCabe & Giovanni Tramonti & Andrew Sutton & Peter Hall & Mike Paulden, 2021. "Probabilistic One-Way Sensitivity Analysis with Multiple Comparators: The Conditional Net Benefit Frontier," PharmacoEconomics, Springer, vol. 39(1), pages 19-24, January.
    20. Nicholas Graves & Katie Page & Elizabeth Martin & David Brain & Lisa Hall & Megan Campbell & Naomi Fulop & Nerina Jimmeison & Katherine White & David Paterson & Adrian G Barnett, 2016. "Cost-Effectiveness of a National Initiative to Improve Hand Hygiene Compliance Using the Outcome of Healthcare Associated Staphylococcus aureus Bacteraemia," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pharme:v:35:y:2017:i:12:d:10.1007_s40273-017-0587-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.