IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v44y2022i2d10.1007_s00291-020-00616-7.html
   My bibliography  Save this article

A branch-and-Benders-cut algorithm for a bi-objective stochastic facility location problem

Author

Listed:
  • Sophie N. Parragh

    (Johannes Kepler University Linz)

  • Fabien Tricoire

    (Vienna University of Economics and Business)

  • Walter J. Gutjahr

    (University of Vienna)

Abstract

In many real-world optimization problems, more than one objective plays a role and input parameters are subject to uncertainty. In this paper, motivated by applications in disaster relief and public facility location, we model and solve a bi-objective stochastic facility location problem. The considered objectives are cost and covered demand, where the demand at the different population centers is uncertain but its probability distribution is known. The latter information is used to produce a set of scenarios. In order to solve the underlying optimization problem, we apply a Benders’ type decomposition approach which is known as the L-shaped method for stochastic programming and we embed it into a recently developed branch-and-bound framework for bi-objective integer optimization. We analyze and compare different cut generation schemes and we show how they affect lower bound set computations, so as to identify the best performing approach. Finally, we compare the branch-and-Benders-cut approach to a straight-forward branch-and-bound implementation based on the deterministic equivalent formulation.

Suggested Citation

  • Sophie N. Parragh & Fabien Tricoire & Walter J. Gutjahr, 2022. "A branch-and-Benders-cut algorithm for a bi-objective stochastic facility location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 419-459, June.
  • Handle: RePEc:spr:orspec:v:44:y:2022:i:2:d:10.1007_s00291-020-00616-7
    DOI: 10.1007/s00291-020-00616-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-020-00616-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-020-00616-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doerner, Karl & Focke, Axel & Gutjahr, Walter J., 2007. "Multicriteria tour planning for mobile healthcare facilities in a developing country," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1078-1096, June.
    2. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    3. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    4. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    5. Sophie N. Parragh & Fabien Tricoire, 2019. "Branch-and-Bound for Bi-objective Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 805-822, October.
    6. Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.
    7. Ghaderi, Abdolsalam & Burdett, Robert L., 2019. "An integrated location and routing approach for transporting hazardous materials in a bi-modal transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 49-65.
    8. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    9. S I Harewood, 2002. "Emergency ambulance deployment in Barbados: a multi-objective approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(2), pages 185-192, February.
    10. Current, John R. & Schilling, David A., 1994. "The median tour and maximal covering tour problems: Formulations and heuristics," European Journal of Operational Research, Elsevier, vol. 73(1), pages 114-126, February.
    11. Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
    12. Caballero, Rafael & Cerda, Emilio & del Mar Munoz, Maria & Rey, Lourdes, 2004. "Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems," European Journal of Operational Research, Elsevier, vol. 158(3), pages 633-648, November.
    13. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    14. Thomas Stidsen & Kim Allan Andersen & Bernd Dammann, 2014. "A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs," Management Science, INFORMS, vol. 60(4), pages 1009-1032, April.
    15. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    16. Emilia Grass & Kathrin Fischer & Antonia Rams, 2020. "An accelerated L-shaped method for solving two-stage stochastic programs in disaster management," Annals of Operations Research, Springer, vol. 284(2), pages 557-582, January.
    17. Georg Pflug & David Wozabal, 2007. "Ambiguity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 435-442.
    18. Tofighi, S. & Torabi, S.A. & Mansouri, S.A., 2016. "Humanitarian logistics network design under mixed uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 239-250.
    19. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, June.
    20. M. Fonseca & Álvaro García-Sánchez & Miguel Ortega-Mier & Francisco Saldanha-da-Gama, 2010. "A stochastic bi-objective location model for strategic reverse logistics," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 158-184, July.
    21. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    22. Juan Villegas & Fernando Palacios & Andrés Medaglia, 2006. "Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example," Annals of Operations Research, Springer, vol. 147(1), pages 109-141, October.
    23. Abdelaziz, Fouad Ben, 2012. "Solution approaches for the multiobjective stochastic programming," European Journal of Operational Research, Elsevier, vol. 216(1), pages 1-16.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingyi Huang & Xinyu Wang & Hongyan Chen, 2022. "Location Selection for Regional Logistics Center Based on Particle Swarm Optimization," Sustainability, MDPI, vol. 14(24), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    2. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    3. Fouad Ben Abdelaziz & Cinzia Colapinto & Davide La Torre & Danilo Liuzzi, 2020. "A stochastic dynamic multiobjective model for sustainable decision making," Annals of Operations Research, Springer, vol. 293(2), pages 539-556, October.
    4. Chen, Yingzhen & Zhao, Qiuhong & Huang, Kai & Xi, Xunzhuo, 2022. "A Bi-objective optimization model for contract design of humanitarian relief goods procurement considering extreme disasters," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    5. Julius Bauß & Michael Stiglmayr, 2024. "Augmenting bi-objective branch and bound by scalarization-based information," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 85-121, August.
    6. Selçuklu, Saltuk Buğra & Coit, David W. & Felder, Frank A., 2020. "Pareto uncertainty index for evaluating and comparing solutions for stochastic multiple objective problems," European Journal of Operational Research, Elsevier, vol. 284(2), pages 644-659.
    7. Mingfa Zheng & Yuan Yi & Zutong Wang & Tianjun Liao, 2017. "Relations among efficient solutions in uncertain multiobjective programming," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 329-357, September.
    8. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    9. Liu, Kanglin & Yang, Liu & Zhao, Yejia & Zhang, Zhi-Hai, 2023. "Multi-period stochastic programming for relief delivery considering evolving transportation network and temporary facility relocation/closure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    10. Javier León & Justo Puerto & Begoña Vitoriano, 2020. "A Risk-Aversion Approach for the Multiobjective Stochastic Programming Problem," Mathematics, MDPI, vol. 8(11), pages 1-26, November.
    11. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    12. Hu, Shaolong & Han, Chuanfeng & Dong, Zhijie Sasha & Meng, Lingpeng, 2019. "A multi-stage stochastic programming model for relief distribution considering the state of road network," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 64-87.
    13. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.
    14. S. Rangavajhala & A. A. Mullur & A. Messac, 2009. "Equality Constraints in Multiobjective Robust Design Optimization: Decision Making Problem," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 315-337, February.
    15. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    16. Mahdi Zarghami, 2010. "Urban Water Management Using Fuzzy-Probabilistic Multi-Objective Programming with Dynamic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4491-4504, December.
    17. Ali Torabi, S. & Shokr, Iman & Tofighi, Saeideh & Heydari, Jafar, 2018. "Integrated relief pre-positioning and procurement planning in humanitarian supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 123-146.
    18. Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
    19. Maharjan, Rajali & Hanaoka, Shinya, 2020. "A credibility-based multi-objective temporary logistics hub location-allocation model for relief supply and distribution under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    20. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:44:y:2022:i:2:d:10.1007_s00291-020-00616-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.