IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v61y2024i2d10.1007_s12597-023-00710-8.html
   My bibliography  Save this article

A production supply chain inventory model with queuing application and carbon emissions under learning effect

Author

Listed:
  • Jai Deep Pandey

    (Banasthali Vidyapith)

  • Geetanjali Sharma

    (Banasthali Vidyapith)

Abstract

Nowadays, a popular term related to production inventory optimization for the greening effect and other policies is carbon emissions tax. Present paper deals with the application of queuing in supply chain management where demand is stochastic and involves carbon emissions and the learning effect. In the final, we have minimized the total inventory cost under queuing application for the supply chain management, where the learning effect follows simultaneous ordering cost, while demand is probabilistic. Numerical examples have been verified for the model, and sensitivity analysis of inventory parameters has been taken for good utilizations in various industrial scenarios.

Suggested Citation

  • Jai Deep Pandey & Geetanjali Sharma, 2024. "A production supply chain inventory model with queuing application and carbon emissions under learning effect," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 548-569, June.
  • Handle: RePEc:spr:opsear:v:61:y:2024:i:2:d:10.1007_s12597-023-00710-8
    DOI: 10.1007/s12597-023-00710-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-023-00710-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-023-00710-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuying Zhang & Dequan Yue & Li Sun & Jinpan Zuo & Bo Yang, 2022. "Analysis of the Queueing-Inventory System with Impatient Customers and Mixed Sales," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-12, May.
    2. Parlar, Mahmut, 1997. "Continuous-review inventory problem with random supply interruptions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 366-385, June.
    3. Dhanya Shajin & Achyutha Krishnamoorthy & Agassi Z. Melikov & Janos Sztrik, 2022. "Multi-Server Queuing Production Inventory System with Emergency Replenishment," Mathematics, MDPI, vol. 10(20), pages 1-24, October.
    4. Asim Paul & Magfura Pervin & Sankar Kumar Roy & Nelson Maculan & Gerhard-Wilhelm Weber, 2022. "A green inventory model with the effect of carbon taxation," Annals of Operations Research, Springer, vol. 309(1), pages 233-248, February.
    5. Osama Abdulaziz Alamri & Mahesh Kumar Jayaswal & Faizan Ahmad Khan & Mandeep Mittal, 2022. "An EOQ Model with Carbon Emissions and Inflation for Deteriorating Imperfect Quality Items under Learning Effect," Sustainability, MDPI, vol. 14(3), pages 1-18, January.
    6. Edward A. Silver, 1981. "Operations Research in Inventory Management: A Review and Critique," Operations Research, INFORMS, vol. 29(4), pages 628-645, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmut Parlar, 2000. "Probabilistic Analysis of Renewal Cycles: An Application to a Non-Markovian Inventory Problem with Multiple Objectives," Operations Research, INFORMS, vol. 48(2), pages 243-255, April.
    2. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    3. Dharmendra Yadav & Umesh Chand & Ruchi Goel & Biswajit Sarkar, 2023. "Smart Production System with Random Imperfect Process, Partial Backordering, and Deterioration in an Inflationary Environment," Mathematics, MDPI, vol. 11(2), pages 1-20, January.
    4. Kumar, Anupam & Evers, Philip T., 2015. "Setting safety stock based on imprecise records," International Journal of Production Economics, Elsevier, vol. 169(C), pages 68-75.
    5. Yingjie Fan & Frank Schwartz & Stefan Voß & David L. Woodruff, 2017. "Stochastic programming for flexible global supply chain planning," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 601-633, December.
    6. Parlar, Mahmut & Perry, David, 1995. "Analysis of a (Q, r, T) inventory policy with deterministic and random yields when future supply is uncertain," European Journal of Operational Research, Elsevier, vol. 84(2), pages 431-443, July.
    7. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    8. Md. Abdul Hakim & Ibrahim M. Hezam & Adel Fahad Alrasheedi & Jeonghwan Gwak, 2022. "Pricing Policy in an Inventory Model with Green Level Dependent Demand for a Deteriorating Item," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    9. Surendra Vikram Singh Padiyar & Vandana & Shiv Raj Singh & Dipti Singh & Mitali Sarkar & Bikash Koli Dey & Biswajit Sarkar, 2022. "Three-Echelon Supply Chain Management with Deteriorated Products under the Effect of Inflation," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
    10. David Yao & Morton Klein, 1989. "Lot sizes under continuous demand: The backorder case," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(5), pages 615-624, October.
    11. Z S Hua & B Zhang & J Yang & D S Tan, 2007. "A new approach of forecasting intermittent demand for spare parts inventories in the process industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(1), pages 52-61, January.
    12. Vladimir Simic & Ali Ebadi Torkayesh & Abtin Ijadi Maghsoodi, 2023. "Locating a disinfection facility for hazardous healthcare waste in the COVID-19 era: a novel approach based on Fermatean fuzzy ITARA-MARCOS and random forest recursive feature elimination algorithm," Annals of Operations Research, Springer, vol. 328(1), pages 1105-1150, September.
    13. Demeter, Krisztina & Szász, Levente & Kő, Andrea, 2019. "A text mining based overview of inventory research in the ISIR special issues 1994–2016," International Journal of Production Economics, Elsevier, vol. 209(C), pages 134-146.
    14. Mahmut Parlar & Defne Berkin, 1991. "Future supply uncertainty in EOQ models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(1), pages 107-121, February.
    15. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    16. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Continuous‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 154-169, January.
    17. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
    18. Eugenia BABILONI & Ester GUIJARRO & Manuel CARDÓS & Sofía ESTELLÉS, 2012. "Exact Fill Rates for the (R, S) Inventory Control with Discrete Distributed Demands for the Backordering Case," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 16(3), pages 19-26.
    19. Saeed Poormoaied & Ece Zeliha Demirci, 2021. "Analysis of an inventory system with emergency ordering option at the time of supply disruption," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1007-1045, December.
    20. Li, Zhaolin & Ou, Jinwen & Liang, Guitian, 2021. "Optimizing hospital drug procurement with rebate contracts," Omega, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:61:y:2024:i:2:d:10.1007_s12597-023-00710-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.