IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v60y2023i3d10.1007_s12597-023-00645-0.html
   My bibliography  Save this article

An inferential analysis for the Weibull-G family of distributions under progressively censored data

Author

Listed:
  • Ashish Kumar Shukla

    (Ramanujan College, University of Delhi)

  • Sakshi Soni

    (University of Delhi)

  • Kapil Kumar

    (Central University of Haryana)

Abstract

In this article, the classical and the Bayesian estimators of the power of parameter and two reliability characteristics, say $$R(t)=P(X>t)$$ R ( t ) = P ( X > t ) and stress-strength reliability $$\mathcal {P}=P(X>Y)$$ P = P ( X > Y ) from the Weibull-G family of distributions are obtained using progressively Type-II censored data. The exact confidence intervals for the unknown parameter and both the reliability measures are also constructed under the same censoring, and the statistical testing procedures are developed for the parameter and $$\mathcal {P}$$ P . Afterward, we obtain the Bayes prediction intervals for future observations in a two-sample situation. We examine the behavior of these estimators under different censoring schemes using the Monte Carlo simulation technique. These estimators and prediction intervals are compared thoroughly, and comments are made based on their numerical values. Finally, we analyze two examples each having two real-life data sets for illustration purposes.

Suggested Citation

  • Ashish Kumar Shukla & Sakshi Soni & Kapil Kumar, 2023. "An inferential analysis for the Weibull-G family of distributions under progressively censored data," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1488-1524, September.
  • Handle: RePEc:spr:opsear:v:60:y:2023:i:3:d:10.1007_s12597-023-00645-0
    DOI: 10.1007/s12597-023-00645-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-023-00645-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-023-00645-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    2. Ajit Chaturvedi & Narendra Kumar & Kapil Kumar, 2018. "Statistical Inference for the Reliability Functions of a Family of Lifetime Distributions based on Progressive Type II Right Censoring," Statistica, Department of Statistics, University of Bologna, vol. 78(1), pages 81-101.
    3. M. Mousa & Z. Jaheen, 2002. "Bayesian prediction for progressively censored data from the Burr model," Statistical Papers, Springer, vol. 43(4), pages 587-593, October.
    4. Kapil Kumar & Renu Garg & Hare Krishna, 2017. "Nakagami distribution as a reliability model under progressive censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 109-122, March.
    5. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.
    6. Ajit Chaturvedi & Renu Garg & Shubham Saini, 2022. "Estimation and testing procedures for the reliability characteristics of Kumaraswamy-G distributions based on the progressively first failure censored samples," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 494-517, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Indrajeet Kumar & Kapil Kumar, 2022. "On estimation of $$P(V," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 189-202, February.
    2. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    3. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    4. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    5. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    6. Mukhtar M. Salah & M. El-Morshedy & M. S. Eliwa & Haitham M. Yousof, 2020. "Expanded Fréchet Model: Mathematical Properties, Copula, Different Estimation Methods, Applications and Validation Testing," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    7. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    8. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    9. Joarder, Avijit & Krishna, Hare & Kundu, Debasis, 2011. "Inferences on Weibull parameters with conventional type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 1-11, January.
    10. Hadeel Klakattawi & Dawlah Alsulami & Mervat Abd Elaal & Sanku Dey & Lamya Baharith, 2022. "A new generalized family of distributions based on combining Marshal-Olkin transformation with T-X family," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-29, February.
    11. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    12. Hassan M. Okasha & Abdulkareem M. Basheer & A. H. El-Baz, 2021. "Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations," Annals of Data Science, Springer, vol. 8(4), pages 769-784, December.
    13. Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
    14. M. El-Din & A. Shafay, 2013. "One- and two-sample Bayesian prediction intervals based on progressively Type-II censored data," Statistical Papers, Springer, vol. 54(2), pages 287-307, May.
    15. Ahtasham Gul & Muhammad Mohsin & Muhammad Adil & Mansoor Ali, 2021. "A modified truncated distribution for modeling the heavy tail, engineering and environmental sciences data," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-24, April.
    16. Abdulrahman Abouammoh & Mohamed Kayid, 2020. "A New Family of Extended Lindley Models: Properties, Estimation and Applications," Mathematics, MDPI, vol. 8(12), pages 1-13, December.
    17. Shahram Yaghoobzadeh, 2017. "A new generalization of the Marshall–Olkin Gompertz distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1580-1587, November.
    18. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.
    19. Haitham M. Yousof & Hafida Goual & Walid Emam & Yusra Tashkandy & Morad Alizadeh & M. Masoom Ali & Mohamed Ibrahim, 2023. "An Alternative Model for Describing the Reliability Data: Applications, Assessment, and Goodness-of-Fit Validation Testing," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    20. Maha A Aldahlan & Farrukh Jamal & Christophe Chesneau & Ibrahim Elbatal & Mohammed Elgarhy, 2020. "Exponentiated power generalized Weibull power series family of distributions: Properties, estimation and applications," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:60:y:2023:i:3:d:10.1007_s12597-023-00645-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.