IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v59y2022i2d10.1007_s12597-021-00538-0.html
   My bibliography  Save this article

Robust discrete spanning tree problem: local search algorithms

Author

Listed:
  • Prabha Sharma

    (The NorthCap University)

  • Sandeep Singh

    (The NorthCap University)

  • Diptesh Ghosh

    (Indian Institute of Management)

  • R Chandrasekaran

    (University of Texas)

Abstract

In this paper the robust spanning tree problem and the relative robust spanning tree problem on an arbitrary graph, whose edge costs vary over a finite set, are considered. All possible combinations of the edge cost form the scenario set. We show that the absolute robust spanning tree problem is polynomially solvable. The relative robust spanning tree problem, when the edge cost of each edge varies over a specified interval, is known to be NP-complete. Status of the relative robust spanning tree problem with edge costs varying over a finite set of values is open. Two local search algorithms, TREE and STAGE2 have been designed for this problem. For graphs with upto 12 nodes our results matched exactly with the optimal solution. For, graphs with 15 nodes computing the exact solution was becoming intractable.

Suggested Citation

  • Prabha Sharma & Sandeep Singh & Diptesh Ghosh & R Chandrasekaran, 2022. "Robust discrete spanning tree problem: local search algorithms," OPSEARCH, Springer;Operational Research Society of India, vol. 59(2), pages 632-644, June.
  • Handle: RePEc:spr:opsear:v:59:y:2022:i:2:d:10.1007_s12597-021-00538-0
    DOI: 10.1007/s12597-021-00538-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-021-00538-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-021-00538-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montemanni, Roberto, 2006. "A Benders decomposition approach for the robust spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1479-1490, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Mallozzi & Juan Vidal-Puga, 2021. "Uncertainty in cooperative interval games: how Hurwicz criterion compatibility leads to egalitarianism," Annals of Operations Research, Springer, vol. 301(1), pages 143-159, June.
    2. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    3. Conde, Eduardo, 2012. "On a constant factor approximation for minmax regret problems using a symmetry point scenario," European Journal of Operational Research, Elsevier, vol. 219(2), pages 452-457.
    4. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Other publications TiSEM e9771ffd-ce59-4b8d-a2c8-d, Tilburg University, School of Economics and Management.
    5. Alireza Amirteimoori & Simin Masrouri, 2021. "DEA-based competition strategy in the presence of undesirable products: An application to paper mills," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 5-21.
    6. Goerigk, Marc & Knust, Sigrid & Le, Xuan Thanh, 2016. "Robust storage loading problems with stacking and payload constraints," European Journal of Operational Research, Elsevier, vol. 253(1), pages 51-67.
    7. Gök Sırma Zeynep Alparslan & Rodica Branzei & Stef Tijs, 2009. "Airport interval games and their Shapley value," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 19(2), pages 9-18.
    8. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Discussion Paper 2008-64, Tilburg University, Center for Economic Research.
    9. Virginie Gabrel & Cécile Murat & Lei Wu, 2013. "New models for the robust shortest path problem: complexity, resolution and generalization," Annals of Operations Research, Springer, vol. 207(1), pages 97-120, August.
    10. Joe Naoum-Sawaya & Christoph Buchheim, 2016. "Robust Critical Node Selection by Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 162-174, February.
    11. Chassein, André B. & Goerigk, Marc, 2015. "A new bound for the midpoint solution in minmax regret optimization with an application to the robust shortest path problem," European Journal of Operational Research, Elsevier, vol. 244(3), pages 739-747.
    12. Chen, Xujin & Hu, Jie & Hu, Xiaodong, 2009. "A polynomial solvable minimum risk spanning tree problem with interval data," European Journal of Operational Research, Elsevier, vol. 198(1), pages 43-46, October.
    13. Pätzold, Julius & Schöbel, Anita, 2020. "Approximate cutting plane approaches for exact solutions to robust optimization problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 20-30.
    14. Wei Wu & Manuel Iori & Silvano Martello & Mutsunori Yagiura, 2022. "An Iterated Dual Substitution Approach for Binary Integer Programming Problems Under the Min-Max Regret Criterion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2523-2539, September.
    15. Marc Goerigk & Adam Kasperski & Paweł Zieliński, 2021. "Combinatorial two-stage minmax regret problems under interval uncertainty," Annals of Operations Research, Springer, vol. 300(1), pages 23-50, May.
    16. Conde, Eduardo & Candia, Alfredo, 2007. "Minimax regret spanning arborescences under uncertain costs," European Journal of Operational Research, Elsevier, vol. 182(2), pages 561-577, October.
    17. Chunqiao Tan & Wenrui Feng & Weibin Han, 2020. "On the Banzhaf-like Value for Cooperative Games with Interval Payoffs," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    18. Aissi, Hassene & Bazgan, Cristina & Vanderpooten, Daniel, 2009. "Min-max and min-max regret versions of combinatorial optimization problems: A survey," European Journal of Operational Research, Elsevier, vol. 197(2), pages 427-438, September.
    19. Jordi Pereira & Igor Averbakh, 2013. "The Robust Set Covering Problem with interval data," Annals of Operations Research, Springer, vol. 207(1), pages 217-235, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:59:y:2022:i:2:d:10.1007_s12597-021-00538-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.