IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v58y2021i4d10.1007_s12597-021-00525-5.html
   My bibliography  Save this article

Efficient designs of modeling attribute control charts for a Weibull distribution under truncated life tests

Author

Listed:
  • Samrad Jafarian-Namin

    (Islamic Azad University
    Yazd University)

  • Muhammad Aslam

    (King Abdulaziz University)

  • Mohammad Saber Fallah Nezhad

    (Yazd University)

  • Fatemeh Eskandari-Kataki

    (Yazd University)

Abstract

In this paper, the designs of the attribute control chart for the Weibull distribution under the time truncated life tests are investigated. Thus, some models are presented for the determination of optimal parameters. All models have the same cost function to be minimized. However, in the economic-statistical model and multi-objective model, the producer’s risk and the consumer’s risk must be satisfied as constraints. These risks are also considered as simultaneous objective functions in the multi-objective model. Therefore, different algorithms are proposed to specify design parameters. For the multi-objective model, the concept of data envelopment analysis (DEA) is utilized in the proposed algorithm. DEA is a powerful non-parametric approach to evaluate the relative efficiency of a group of decision-making units (DMUs) with multiple inputs and outputs. Through simulation studies and comparisons, the results of the proposed models are investigated. Besides, a real example for the inspection of chip products is provided to illustrate and compare the performance of various models.

Suggested Citation

  • Samrad Jafarian-Namin & Muhammad Aslam & Mohammad Saber Fallah Nezhad & Fatemeh Eskandari-Kataki, 2021. "Efficient designs of modeling attribute control charts for a Weibull distribution under truncated life tests," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 942-961, December.
  • Handle: RePEc:spr:opsear:v:58:y:2021:i:4:d:10.1007_s12597-021-00525-5
    DOI: 10.1007/s12597-021-00525-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-021-00525-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-021-00525-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Zhang & Luo, Hua & Zhang, Xiaolan, 2006. "Optimal np control chart with curtailment," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1723-1741, November.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Zhang Wu & Qinan Wang, 2007. "An NP Control Chart Using Double Inspections," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(7), pages 843-855.
    4. Lee Ho, Linda & Quinino, Roberto Costa, 2013. "An attribute control chart for monitoring the variability of a process," International Journal of Production Economics, Elsevier, vol. 145(1), pages 263-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Jorge Muñoz & Manuel J. Campuzano & Jaime Mosquera, 2022. "Optimized np Attribute Control Chart Using Triple Sampling," Mathematics, MDPI, vol. 10(20), pages 1-21, October.
    2. Sajid Ali & Shayaan Rajput & Ismail Shah & Hassan Houmani, 2023. "Process Monitoring Using Truncated Gamma Distribution," Stats, MDPI, vol. 6(4), pages 1-25, December.
    3. Kerstin Pull & Birgit Pferdmenges & Uschi Backes-Gellner, 2017. "Do Research Training Groups Operate at Optimal Size?," Schmalenbach Business Review, Springer;Schmalenbach-Gesellschaft, vol. 18(2), pages 129-145, May.
    4. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    5. Nurhan Davutyan & Canan Yildirim, 2013. "Competitiveness in Turkish Banking: 2002-2011," Working Papers 774, Economic Research Forum, revised Sep 2013.
    6. Premachandra, I.M. & Bhabra, Gurmeet Singh & Sueyoshi, Toshiyuki, 2009. "DEA as a tool for bankruptcy assessment: A comparative study with logistic regression technique," European Journal of Operational Research, Elsevier, vol. 193(2), pages 412-424, March.
    7. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    8. Agrell, Per J. & Teusch, Jonas, 2020. "Predictability and strategic behavior under frontier regulation," Energy Policy, Elsevier, vol. 137(C).
    9. Christian Growitsch & Tooraj Jamasb & Christine Müller & Matthias Wissner, 2016. "Social Cost Efficient Service Quality: Integrating Customer Valuation in Incentive Regulation—Evidence from the Case of Norway," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 71-91, Springer.
    10. Tengfei Wang & Jong Woo Kang & Vincent F. Valentine, 2020. "A holistic analysis of national e-commerce and logistics development," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(3), pages 500-513, September.
    11. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, August.
    12. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    13. Afsharian, Mohsen & Ahn, Heinz & Lopes, Ana & Vilela, Bruno, 2019. "Pitfalls in estimating the X-factor: The case of energy transmission regulation in Brazil," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 1-9.
    14. Huaimo You & Hong Fang & Xu Wang & Siran Fang, 2018. "Environmental Efficiency of Photovoltaic Power Plants in China—A Comparative Study of Different Economic Zones and Plant Types," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    15. Coelli, Tim J., 1995. "Recent Developments In Frontier Modelling And Efficiency Measurement," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 39(3), pages 1-27, December.
    16. Azad, Md A.S. & Ancev, Tihomir, 2010. "Using ecological indices to measure economic and environmental performance of irrigated agriculture," Ecological Economics, Elsevier, vol. 69(8), pages 1731-1739, June.
    17. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    18. repec:lan:wpaper:1115 is not listed on IDEAS
    19. Førsund, Finn, 2015. "Economic Perspectives on DEA," Memorandum 10/2015, Oslo University, Department of Economics.
    20. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    21. Ruiqing Yuan & Xiangyang Xu & Yanli Wang & Jiayi Lu & Ying Long, 2024. "Evaluating Carbon-Emission Efficiency in China’s Construction Industry: An SBM-Model Analysis of Interprovincial Building Heating," Sustainability, MDPI, vol. 16(6), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:58:y:2021:i:4:d:10.1007_s12597-021-00525-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.