IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v16y2023i3d10.1007_s12063-023-00364-1.html
   My bibliography  Save this article

Customized orders management in connected make-to-order supply chains

Author

Listed:
  • Amirhosein Gholami

    (Binghamton University)

  • Nasim Nezamoddini

    (Oakland University)

  • Mohammad T. Khasawneh

    (Binghamton University)

Abstract

This paper solves the order acceptance and scheduling (OAS) problem of customized products in make-to-order (MTO) supply chains. A new integrated framework that links supply chain operations is presented to overcome uncertainties in order variations and maximize the agility and responsiveness of those systems. A novel mixed integer programming mathematical model is proposed to optimize order acceptance, production planning, maintenance, and transportation decisions. The products are produced based on job-shop scheduling plans while considering the real-time access to available supply and distribution resources. To validate the efficiency of the proposed framework, the model is tested with a four-layer supply chain. Then, a wide range of experiments is implemented to study the effects of different factors such as order uncertainty, costs, maintenance, and customer satisfaction. The results proved that the proposed integrated order acceptance and scheduling can save up to 30% of supply chain expenses with efficient management of the supply, production, and distribution capacities. The results also showed that defining reasonable target customer satisfaction plays an important role in the success of these complex service systems. In addition, a scalability test proved the efficiency of the proposed model for decision making in large systems.

Suggested Citation

  • Amirhosein Gholami & Nasim Nezamoddini & Mohammad T. Khasawneh, 2023. "Customized orders management in connected make-to-order supply chains," Operations Management Research, Springer, vol. 16(3), pages 1428-1443, September.
  • Handle: RePEc:spr:opmare:v:16:y:2023:i:3:d:10.1007_s12063-023-00364-1
    DOI: 10.1007/s12063-023-00364-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-023-00364-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-023-00364-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katoozian, Hoora & Zanjani, Masoumeh Kazemi, 2022. "Supply network design for mass personalization in Industry 4.0 era," International Journal of Production Economics, Elsevier, vol. 244(C).
    2. Lei Xu & Qian Wang & Simin Huang, 2015. "Dynamic order acceptance and scheduling problem with sequence-dependent setup time," International Journal of Production Research, Taylor & Francis Journals, vol. 53(19), pages 5797-5808, October.
    3. Morteza Lalmazloumian & Kuan Yew Wong & Kannan Govindan & Devika Kannan, 2016. "A robust optimization model for agile and build-to-order supply chain planning under uncertainties," Annals of Operations Research, Springer, vol. 240(2), pages 435-470, May.
    4. Kathryn E. Stecke & Xuying Zhao, 2007. "Production and Transportation Integration for a Make-to-Order Manufacturing Company with a Commit-to-Delivery Business Mode," Manufacturing & Service Operations Management, INFORMS, vol. 9(2), pages 206-224, September.
    5. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    6. He, N. & Zhang, D.Z. & Li, Q., 2014. "Agent-based hierarchical production planning and scheduling in make-to-order manufacturing system," International Journal of Production Economics, Elsevier, vol. 149(C), pages 117-130.
    7. Mestry, Siddharth & Damodaran, Purushothaman & Chen, Chin-Sheng, 2011. "A branch and price solution approach for order acceptance and capacity planning in make-to-order operations," European Journal of Operational Research, Elsevier, vol. 211(3), pages 480-495, June.
    8. Persson, Fredrik & Olhager, Jan, 2002. "Performance simulation of supply chain designs," International Journal of Production Economics, Elsevier, vol. 77(3), pages 231-245, June.
    9. Jens K. Perret & Katharina Schuck & Carolin Hitzegrad, 2022. "Production Scheduling of Personalized Fashion Goods in a Mass Customization Environment," Sustainability, MDPI, vol. 14(1), pages 1-15, January.
    10. Li, Haitao & Womer, Keith, 2012. "Optimizing the supply chain configuration for make-to-order manufacturing," European Journal of Operational Research, Elsevier, vol. 221(1), pages 118-128.
    11. Na Liu & Pui-Sze Chow & Hongshan Zhao, 2020. "Challenges and critical successful factors for apparel mass customization operations: recent development and case study," Annals of Operations Research, Springer, vol. 291(1), pages 531-563, August.
    12. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    13. Leng, Mingming & Parlar, Mahmut, 2010. "Game-theoretic analyses of decentralized assembly supply chains: Non-cooperative equilibria vs. coordination with cost-sharing contracts," European Journal of Operational Research, Elsevier, vol. 204(1), pages 96-104, July.
    14. An Pan & Tsan-Ming Choi, 2016. "An agent-based negotiation model on price and delivery date in a fashion supply chain," Annals of Operations Research, Springer, vol. 242(2), pages 529-557, July.
    15. Li, Xin & Ventura, Jose A., 2020. "Exact algorithms for a joint order acceptance and scheduling problem," International Journal of Production Economics, Elsevier, vol. 223(C).
    16. Volling, Thomas & Spengler, Thomas S., 2011. "Modeling and simulation of order-driven planning policies in build-to-order automobile production," International Journal of Production Economics, Elsevier, vol. 131(1), pages 183-193, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perea, Federico & Yepes-Borrero, Juan C. & Menezes, Mozart B.C., 2023. "Acceptance Ordering Scheduling Problem: The impact of an order-portfolio on a make-to-order firm’s profitability," International Journal of Production Economics, Elsevier, vol. 264(C).
    2. Chen, Wenchong & Gong, Xuejian & Rahman, Humyun Fuad & Liu, Hongwei & Qi, Ershi, 2021. "Real-time order acceptance and scheduling for data-enabled permutation flow shops: Bilevel interactive optimization with nonlinear integer programming," Omega, Elsevier, vol. 105(C).
    3. Zhai, Yue & Hua, Guowei & Cheng, Meng & Cheng, T.C.E., 2023. "Production lead-time hedging and order allocation in an MTO supply chain," European Journal of Operational Research, Elsevier, vol. 311(3), pages 887-905.
    4. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    5. Talla Nobibon, Fabrice & Leus, Roel & Nip, Kameng & Wang, Zhenbo, 2015. "Resource loading with time windows," European Journal of Operational Research, Elsevier, vol. 244(2), pages 404-416.
    6. Tarhan, İstenç & Oğuz, Ceyda, 2022. "A matheuristic for the generalized order acceptance and scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 87-103.
    7. Xin Li & José A. Ventura & Kevin A. Bunn, 2021. "A joint order acceptance and scheduling problem with earliness and tardiness penalties considering overtime," Journal of Scheduling, Springer, vol. 24(1), pages 49-68, February.
    8. Altendorfer, Klaus & Minner, Stefan, 2015. "Influence of order acceptance policies on optimal capacity investment with stochastic customer required lead times," European Journal of Operational Research, Elsevier, vol. 243(2), pages 555-565.
    9. Li, Feng & Xu, Shifu & Xu, Zhou, 2023. "New exact and approximation algorithms for integrated production and transportation scheduling with committed delivery due dates and order acceptance," European Journal of Operational Research, Elsevier, vol. 306(1), pages 127-140.
    10. Surbhi Upadhyay & Suresh Kumar Garg & Rishu Sharma, 2023. "Analyzing the Factors for Implementing Make-to-Order Manufacturing System," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    11. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2016. "Dynamic job assignment: A column generation approach with an application to surgery allocation," Discussion Papers on Economics 4/2016, University of Southern Denmark, Department of Economics.
    12. Simon Thevenin & Nicolas Zufferey & Rémy Glardon, 2017. "Model and metaheuristics for a scheduling problem integrating procurement, sale and distribution decisions," Annals of Operations Research, Springer, vol. 259(1), pages 437-460, December.
    13. de Weerdt, Mathijs & Baart, Robert & He, Lei, 2021. "Single-machine scheduling with release times, deadlines, setup times, and rejection," European Journal of Operational Research, Elsevier, vol. 291(2), pages 629-639.
    14. Andrea Borenich & Peter Greistorfer & Marc Reimann, 2020. "Model-based production cost estimation to support bid processes: an automotive case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 841-868, September.
    15. R. Micale & C. M. La Fata & M. Enea & G. La Scalia, 2021. "Regenerative scheduling problem in engineer to order manufacturing: an economic assessment," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1913-1925, October.
    16. Klein, Robert & Koch, Sebastian & Steinhardt, Claudius & Strauss, Arne K., 2020. "A review of revenue management: Recent generalizations and advances in industry applications," European Journal of Operational Research, Elsevier, vol. 284(2), pages 397-412.
    17. Zhang, Xiandong & (Yale) Gong, Yeming & Zhou, Shuyu & de Koster, René & van de Velde, Steef, 2016. "Increasing the revenue of self-storage warehouses by optimizing order scheduling," European Journal of Operational Research, Elsevier, vol. 252(1), pages 69-78.
    18. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    19. Yanwei Chen & Xiaojun Liu & Kaiqing Huang & Huajun Tang, 2022. "Pricing and Service Effort Decisions of Book Dual-Channel Supply Chains with Showrooming Effect Based on Cost-Sharing Contracts," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    20. Lin, Cheng-Chang & Wu, Yi-Chen, 2013. "Optimal pricing for build-to-order supply chain design under price-dependent stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 31-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:16:y:2023:i:3:d:10.1007_s12063-023-00364-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.