IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v20y2020i1d10.1007_s12351-017-0334-5.html
   My bibliography  Save this article

Solving the multiple level warehouse layout problem using ant colony optimization

Author

Listed:
  • Jean-Paul Arnaout

    (Gulf University for Science and Technology)

  • Caline ElKhoury

    (Lebanese American University)

  • Gamze Karayaz

    (Işik University)

Abstract

This paper addresses the multiple level warehouse layout problem, which involves assigning items to cells and levels with the objective of minimizing transportation costs. A monthly demand and an inventory requirement are associated with every item type along with vertical and horizontal unit transportation costs. The warehouse has one port to transport items vertically from ground floor to the other levels, where each item must be assigned to exactly one cell on the assigned level. An ant colony optimization (ACO) algorithm is adapted to this NP-complete problem and its performance is evaluated by comparing its solutions to the ones obtained using genetic algorithms (GA) as well as the optimal solutions for small problems. The computational results reflected the superiority of ACO in large-size problem instances, with a marginally better performance than GA in smaller ones, while solving the tested instances within a reasonable computational time. Furthermore, ACO was able to attain most of the known optimal solutions for small-size problem instances.

Suggested Citation

  • Jean-Paul Arnaout & Caline ElKhoury & Gamze Karayaz, 2020. "Solving the multiple level warehouse layout problem using ant colony optimization," Operational Research, Springer, vol. 20(1), pages 473-490, March.
  • Handle: RePEc:spr:operea:v:20:y:2020:i:1:d:10.1007_s12351-017-0334-5
    DOI: 10.1007/s12351-017-0334-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-017-0334-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-017-0334-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ortiz-Astorquiza, Camilo & Contreras, Ivan & Laporte, Gilbert, 2015. "Multi-level facility location as the maximization of a submodular set function," European Journal of Operational Research, Elsevier, vol. 247(3), pages 1013-1016.
    2. Gordon C. Armour & Elwood S. Buffa, 1963. "A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities," Management Science, INFORMS, vol. 9(2), pages 294-309, January.
    3. Lai, K. K. & Xue, Jue & Zhang, Guoqing, 2002. "Layout design for a paper reel warehouse: A two-stage heuristic approach," International Journal of Production Economics, Elsevier, vol. 75(3), pages 231-243, February.
    4. Yavuz A. Bozer & Russell D. Meller & Steven J. Erlebacher, 1994. "An Improvement-Type Layout Algorithm for Single and Multiple-Floor Facilities," Management Science, INFORMS, vol. 40(7), pages 918-932, July.
    5. Roger V. Johnson, 1982. "Spacecraft for Multi-Floor Layout Planning," Management Science, INFORMS, vol. 28(4), pages 407-417, April.
    6. T. E. Block, 1977. "Note--A Note on "Comparison of Computer Algorithms and Visual Based Methods for Plant Layout" by M. Scriabin and R. C. Vergin," Management Science, INFORMS, vol. 24(2), pages 235-237, October.
    7. Michael Scriabin & Roger C. Vergin, 1975. "Comparison of Computer Algorithms and Visual Based Methods for Plant Layout," Management Science, INFORMS, vol. 22(2), pages 172-181, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiulian Hu & Yi-Fei Chuang, 2023. "E-commerce warehouse layout optimization: systematic layout planning using a genetic algorithm," Electronic Commerce Research, Springer, vol. 23(1), pages 97-114, March.
    2. Kuang-Hua Hu & Ming-Fu Hsu & Fu-Hsiang Chen & Mu-Ziyun Liu, 2021. "Identifying the key factors of subsidiary supervision and management using an innovative hybrid architecture in a big data environment," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Paul Arnaout, 2018. "Worm optimization for the multiple level warehouse layout problem," Annals of Operations Research, Springer, vol. 269(1), pages 29-51, October.
    2. Wang, Haibo & Alidaee, Bahram, 2019. "The multi-floor cross-dock door assignment problem: Rising challenges for the new trend in logistics industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 30-47.
    3. Lee, Geun-Cheol & Kim, Yeong-Dae, 2000. "Algorithms for adjusting shapes of departments in block layouts on the grid-based plane," Omega, Elsevier, vol. 28(1), pages 111-122, February.
    4. Zhongwei Zhang & Lihui Wu & Zhaoyun Wu & Wenqiang Zhang & Shun Jia & Tao Peng, 2022. "Energy-Saving Oriented Manufacturing Workshop Facility Layout: A Solution Approach Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 14(5), pages 1-28, February.
    5. Anjos, Miguel F. & Vieira, Manuel V.C., 2017. "Mathematical optimization approaches for facility layout problems: The state-of-the-art and future research directions," European Journal of Operational Research, Elsevier, vol. 261(1), pages 1-16.
    6. Stefan Helber & Daniel Böhme & Farid Oucherif & Svenja Lagershausen & Steffen Kasper, 2016. "A hierarchical facility layout planning approach for large and complex hospitals," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 5-29, June.
    7. Jerzy Grobelny & Rafal Michalski, 2016. "A concept of a flexible approach to the facilities layout problems in logistics systems," WORking papers in Management Science (WORMS) WORMS/16/11, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    8. Mans, Bernard & Mautor, Thierry & Roucairol, Catherine, 1995. "A parallel depth first search branch and bound algorithm for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 81(3), pages 617-628, March.
    9. Miguel F. Anjos & Anthony Vannelli, 2006. "A New Mathematical-Programming Framework for Facility-Layout Design," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 111-118, February.
    10. Bock, Stefan & Hoberg, Kai, 2007. "Detailed layout planning for irregularly-shaped machines with transportation path design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 693-718, March.
    11. Jankovits, Ibolya & Luo, Chaomin & Anjos, Miguel F. & Vannelli, Anthony, 2011. "A convex optimisation framework for the unequal-areas facility layout problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 199-215, October.
    12. Zhang, G.Q. & Lai, K.K., 2006. "Combining path relinking and genetic algorithms for the multiple-level warehouse layout problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 413-425, March.
    13. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    14. Jennifer Pazour & Russell Meller, 2012. "A multiple-drawer medication layout problem in automated dispensing cabinets," Health Care Management Science, Springer, vol. 15(4), pages 339-354, December.
    15. Lin, Jin-Ling & Foote, Bobbie & Pulat, Simin & Chang, Chir-Ho & Cheung, John Y., 1996. "Solving the failure-to-fit problem for plant layout: By changing department shapes and sizes," European Journal of Operational Research, Elsevier, vol. 89(1), pages 135-146, February.
    16. Bolte, Andreas & Thonemann, Ulrich Wilhelm, 1996. "Optimizing simulated annealing schedules with genetic programming," European Journal of Operational Research, Elsevier, vol. 92(2), pages 402-416, July.
    17. Mariem Besbes & Marc Zolghadri & Roberta Costa Affonso & Faouzi Masmoudi & Mohamed Haddar, 2020. "A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A* search," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 615-640, March.
    18. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    19. Balakrishnan, Jaydeep & Cheng, Chun Hung & Conway, Daniel G. & Lau, Chun Ming, 2003. "A hybrid genetic algorithm for the dynamic plant layout problem," International Journal of Production Economics, Elsevier, vol. 86(2), pages 107-120, November.
    20. Yu, Junfang & Sarker, Bhaba R., 2003. "Directional decomposition heuristic for a linear machine-cell location problem," European Journal of Operational Research, Elsevier, vol. 149(1), pages 142-184, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:20:y:2020:i:1:d:10.1007_s12351-017-0334-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.