IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v98y2019i3d10.1007_s11069-018-3462-1.html
   My bibliography  Save this article

An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change

Author

Listed:
  • Ulysse Pasquier

    (University of East Anglia)

  • Yi He

    (University of East Anglia)

  • Simon Hooton

    (Broads Authority)

  • Marisa Goulden

    (University of East Anglia)

  • Kevin M. Hiscock

    (University of East Anglia)

Abstract

Coastal regions are dynamic areas that often lie at the junction of different natural hazards. Extreme events such as storm surges and high precipitation are significant sources of concern for flood management. As climatic changes and sea-level rise put further pressure on these vulnerable systems, there is a need for a better understanding of the implications of compounding hazards. Recent computational advances in hydraulic modelling offer new opportunities to support decision-making and adaptation. Our research makes use of recently released features in the HEC-RAS version 5.0 software to develop an integrated 1D–2D hydrodynamic model. Using extreme value analysis with the Peaks-Over-Threshold method to define extreme scenarios, the model was applied to the eastern coast of the UK. The sensitivity of the protected wetland known as the Broads to a combination of fluvial, tidal and coastal sources of flooding was assessed, accounting for different rates of twenty-first century sea-level rise up to the year 2100. The 1D–2D approach led to a more detailed representation of inundation in coastal urban areas, while allowing for interactions with more fluvially dominated inland areas to be captured. While flooding was primarily driven by increased sea levels, combined events exacerbated flooded area by 5–40% and average depth by 10–32%, affecting different locations depending on the scenario. The results emphasise the importance of catchment-scale strategies that account for potentially interacting sources of flooding.

Suggested Citation

  • Ulysse Pasquier & Yi He & Simon Hooton & Marisa Goulden & Kevin M. Hiscock, 2019. "An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(3), pages 915-937, September.
  • Handle: RePEc:spr:nathaz:v:98:y:2019:i:3:d:10.1007_s11069-018-3462-1
    DOI: 10.1007/s11069-018-3462-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3462-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3462-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guiling Wang & Dagang Wang & Kevin E. Trenberth & Amir Erfanian & Miao Yu & Michael G. Bosilovich & Dana T. Parr, 2017. "The peak structure and future changes of the relationships between extreme precipitation and temperature," Nature Climate Change, Nature, vol. 7(4), pages 268-274, April.
    2. Dhruvesh P. Patel & Jorge A. Ramirez & Prashant K. Srivastava & Michaela Bray & Dawei Han, 2017. "Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: a case application of the new HEC-RAS 5," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 93-130, October.
    3. Thomas Wahl & Shaleen Jain & Jens Bender & Steven D. Meyers & Mark E. Luther, 2015. "Increasing risk of compound flooding from storm surge and rainfall for major US cities," Nature Climate Change, Nature, vol. 5(12), pages 1093-1097, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Shen & Fangbi Tan, 2020. "Effects of DEM resolution and resampling technique on building treatment for urban inundation modeling: a case study for the 2016 flooding of the HUST campus in Wuhan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 927-957, October.
    2. Tran Hong Thai & Doan Quang Tri & Nguyen Xuan Anh & Vo Van Hoa & Hiep Van Nguyen & Nguyen Van Nhat & Quach Thi Thanh Tuyet & Ha T. T. Pham & Pham Hoai Chung & Vu Van Thang & Tran Duy Thuc, 2023. "Numerical Simulation of the Flood and Inundation Caused by Typhoon Noru Downstream from the Vu Gia-Thu Bon River Basin," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    3. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    4. Shubham M. Jibhakate & P. V. Timbadiya & P. L. Patel, 2023. "Flood hazard assessment for the coastal urban floodplain using 1D/2D coupled hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1557-1590, March.
    5. Daniele Celli & Davide Pasquali & Carmine Di Nucci & Marcello Di Risio, 2024. "Influence of short-term configurations of a mouth deviation on river hydraulics: the Pescara River case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10513-10538, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    2. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    3. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    4. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    5. Ross Gudde & Yi He & Ulysse Pasquier & Nicole Forstenhäusler & Ciar Noble & Qianyu Zha, 2024. "Quantifying future changes of flood hazards within the Broadland catchment in the UK," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9893-9915, September.
    6. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    7. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    8. Syed Abu Shoaib & Mohammad Zaved Kaiser Khan & Nahid Sultana & Taufique H. Mahmood, 2021. "Quantifying Uncertainty in Food Security Modeling," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
    9. Sharma, Shailesh & Waldman, John & Afshari, Shahab & Fekete, Balazs, 2019. "Status, trends and significance of American hydropower in the changing energy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 112-122.
    10. Jessie Ruth Schleypen & Charlotte Plinke & Tobias Geiger, 2024. "The Impacts of Multiple Tropical Cyclone Events and Associated Precipitation on Household Income and Expenditures," Economics of Disasters and Climate Change, Springer, vol. 8(2), pages 197-233, July.
    11. P. M. Orton & F. R. Conticello & F. Cioffi & T. M. Hall & N. Georgas & U. Lall & A. F. Blumberg & K. MacManus, 2020. "Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 729-757, June.
    12. Zigeng Niu & Lan Feng & Xinxin Chen & Xiuping Yi, 2021. "Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data," IJERPH, MDPI, vol. 18(11), pages 1-26, June.
    13. Jackson, Nicole D. & Gunda, Thushara, 2021. "Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States," Applied Energy, Elsevier, vol. 302(C).
    14. Sarosh Alam Ghausi & Erwin Zehe & Subimal Ghosh & Yinglin Tian & Axel Kleidon, 2024. "Thermodynamically inconsistent extreme precipitation sensitivities across continents driven by cloud-radiative effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Diana Carolina Del Angel & David Yoskowitz & Matthew Vernon Bilskie & Scott C. Hagen, 2022. "A Socioeconomic Dataset of the Risk Associated with the 1% and 0.2% Return Period Stillwater Flood Elevation under Sea-Level Rise for the Northern Gulf of Mexico," Data, MDPI, vol. 7(6), pages 1-15, May.
    16. Y. Androulidakis & C. Makris & Z. Mallios & I. Pytharoulis & V. Baltikas & Y. Krestenitis, 2023. "Storm surges and coastal inundation during extreme events in the Mediterranean Sea: the IANOS Medicane," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 939-978, May.
    17. Dominik Paprotny & Michalis I. Vousdoukas & Oswaldo Morales-Nápoles & Sebastiaan N. Jonkman & Luc Feyen, 2020. "Pan-European hydrodynamic models and their ability to identify compound floods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 933-957, April.
    18. Emanuele Bevacqua & Laura Suarez-Gutierrez & Aglaé Jézéquel & Flavio Lehner & Mathieu Vrac & Pascal Yiou & Jakob Zscheischler, 2023. "Advancing research on compound weather and climate events via large ensemble model simulations," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Anamaria Bukvic & Guillaume Rohat & Alex Apotsos & Alex de Sherbinin, 2020. "A Systematic Review of Coastal Vulnerability Mapping," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
    20. Yang, Meijian & Wang, Guiling, 2023. "Heat stress to jeopardize crop production in the US Corn Belt based on downscaled CMIP5 projections," Agricultural Systems, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:98:y:2019:i:3:d:10.1007_s11069-018-3462-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.