IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v90y2018i2d10.1007_s11069-017-3078-x.html
   My bibliography  Save this article

A new approach to minimize the loss of life after natural hazards by using Android operating system

Author

Listed:
  • Emre Avuçlu

    (Aksaray University)

  • Fatih Başçiftçi

    (Selçuk University)

Abstract

Nowadays, the usage rates of smartphones are increasing rapidly. With the versatility of its features, smartphones have succeeded in attracting users. Performing this study has also affected the usage rate of smartphones every day. It is possible to determine the position with GPS (Global Positioning System) technology which is located in smartphones. In this study, smartphone location notification was used to detect the locations of the people who were under debris after the earthquake by means of the phones on them. People who cannot be reached for any reason will be immediately identified, and emergency interventions will be possible. Thus, the survival rate of the injured will be high with early intervention. In this study, it was aimed to minimize the loss of life after the earthquake and all the negativities that would be experienced in society due to this loss. The developed application has been tested in the external world, and the obtained data are given in results section.

Suggested Citation

  • Emre Avuçlu & Fatih Başçiftçi, 2018. "A new approach to minimize the loss of life after natural hazards by using Android operating system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 1005-1016, January.
  • Handle: RePEc:spr:nathaz:v:90:y:2018:i:2:d:10.1007_s11069-017-3078-x
    DOI: 10.1007/s11069-017-3078-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3078-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3078-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Arthur & Levinson, David, 2017. "A model of two-destination choice in trip chains with GPS data," Journal of choice modelling, Elsevier, vol. 24(C), pages 51-62.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsoleridis, Panagiotis & Choudhury, Charisma F. & Hess, Stephane, 2022. "Deriving transport appraisal values from emerging revealed preference data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 225-245.
    2. Leite Mariante, Gabriel & Ma, Tai-Yu & Van Acker, Véronique, 2018. "Modeling discretionary activity location choice using detour factors and sampling of alternatives for mixed logit models," Journal of Transport Geography, Elsevier, vol. 72(C), pages 151-165.
    3. Zong, Fang & Tian, Yongda & He, Yanan & Tang, Jinjun & Lv, Jianyu, 2019. "Trip destination prediction based on multi-day GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 258-269.
    4. Pizzol, Bruna & Strambi, Orlando & Giannotti, Mariana & Arbex, Renato Oliveira & Alves, Bianca Bianchi, 2021. "Activity behavior of residents of Paraisópolis slum: Analysis of multiday activity patterns using data collected with smartphones," Journal of choice modelling, Elsevier, vol. 39(C).
    5. Yuan Yuan & Chunfu Shao & Zhichao Cao & Chaoying Yin, 2023. "The Effect of Travel-Chain Complexity on Public Transport Travel Intention: A Mixed-Selection Model," IJERPH, MDPI, vol. 20(5), pages 1-29, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:90:y:2018:i:2:d:10.1007_s11069-017-3078-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.