IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v89y2017i1d10.1007_s11069-017-2970-8.html
   My bibliography  Save this article

Impact of the Darjeeling–Bhutan Himalayan front on rainfall hazard pattern

Author

Listed:
  • Paweł Prokop

    (Polish Academy of Sciences)

  • Adam Walanus

    (AGH University of Science and Technology)

Abstract

Multiscale interaction between monsoonal circulation and the local topography causes the southern front of the Darjeeling–Bhutan Himalaya to receive one of the highest annual rainfalls (3000–6000 mm) and most frequent heavy rains (up to 800 mm day−1) along the whole southern Himalayan margin. An examination of the patterns of annual rainfall, rainfall concentration, overland flow generation and slope instability indices in the Darjeeling–Bhutan Himalaya for 1986–2015 indicates that the mountain front disturbs rainfall gradient between the Bay of Bengal and the Tibetan Plateau. The results show that the precipitation concentration indices are lowest at the Himalayan front where the annual rainfall and the number of rainy days are highest. The Himalayan front has the highest predisposition to produce overland flow compared to adjacent foreland and the mountain interior. The average probability of the rainfall initialising the shallow landslides increases from 0.6% for a 1-day rainfall threshold of 144 mm to 6.1% for a 4-day rainfall threshold of 193 mm in the study area. The highest probability (up to 10%) of 2-day and longer low-intensity storms at the mountain front indicate that its area is threatened with particularly larger and deeper landslides. The multivariate regression analysis reveals statistically significant linear relationships of rainfall hazard indices with elevation and the distance to the mountain front in the mountain foreland and Himalaya, respectively. Regionally, the Darjeeling Himalaya reveals lower values of rainfall hazard indices, in comparison to the Bhutan Himalaya.

Suggested Citation

  • Paweł Prokop & Adam Walanus, 2017. "Impact of the Darjeeling–Bhutan Himalayan front on rainfall hazard pattern," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 387-404, October.
  • Handle: RePEc:spr:nathaz:v:89:y:2017:i:1:d:10.1007_s11069-017-2970-8
    DOI: 10.1007/s11069-017-2970-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2970-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2970-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fumie Murata & Taiichi Hayashi & Jun Matsumoto & Haruhisa Asada, 2007. "Rainfall on the Meghalaya plateau in northeastern India—one of the rainiest places in the world," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(2), pages 391-399, August.
    2. O. Dhar & Shobha Nandargi, 2003. "Hydrometeorological Aspects of Floods in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(1), pages 1-33, January.
    3. Peng Shi & Miao Wu & Simin Qu & Peng Jiang & Xueyuan Qiao & Xi Chen & Mi Zhou & Zhicai Zhang, 2015. "Spatial Distribution and Temporal Trends in Precipitation Concentration Indices for the Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3941-3955, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manoranjan Ghosh & Somnath Ghosal, 2021. "Climate change vulnerability of rural households in flood-prone areas of Himalayan foothills, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2570-2595, February.
    2. Bhagawat Rimal & Lifu Zhang & Hamidreza Keshtkar & Xuejian Sun & Sushila Rijal, 2018. "Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal," Land, MDPI, vol. 7(1), pages 1-22, March.
    3. Subham Roy & Nimai Singha & Arghadeep Bose & Debanjan Basak & Indrajit Roy Chowdhury, 2023. "Multi-influencing factor (MIF) and RS–GIS-based determination of agriculture site suitability for achieving sustainable development of Sub-Himalayan region, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7101-7133, July.
    4. Prokop, Paweł, 2018. "Tea plantations as a driving force of long-term land use and population changes in the Eastern Himalayan piedmont," Land Use Policy, Elsevier, vol. 77(C), pages 51-62.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Wang & Yangyang Liu & Linjing Tong & Weihong Zhou & Xiaoyu Li & Jianlong Li, 2018. "Rescaled Statistics and Wavelet Analysis on Agricultural Drought Disaster Periodic Fluctuations in China from 1950 to 2016," Sustainability, MDPI, vol. 10(9), pages 1-12, September.
    2. Xiyu Dong & Gayatri Kathayat & Sune O. Rasmussen & Anders Svensson & Jeffrey P. Severinghaus & Hanying Li & Ashish Sinha & Yao Xu & Haiwei Zhang & Zhengguo Shi & Yanjun Cai & Carlos Pérez-Mejías & Jon, 2022. "Coupled atmosphere-ice-ocean dynamics during Heinrich Stadial 2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. S. Karuna Sagar & M. Rajeevan & S. Vijaya Bhaskara Rao, 2017. "On increasing monsoon rainstorms over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1743-1757, February.
    4. Hüseyin Çelik & Gonca Coskun & H. Cigizoglu & Necati Ağıralioğlu & Abdurrahim Aydın & A. Esin, 2012. "The analysis of 2004 flood on Kozdere Stream in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 461-477, September.
    5. Ishfaq Hussain Malik, 2022. "Spatial dimension of impact, relief, and rescue of the 2014 flood in Kashmir Valley," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1911-1929, February.
    6. Rajesh Kumar & Prasenjit Acharya, 2016. "Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 437-464, October.
    7. Shen, Chenhua, 2019. "The influence of a scaling exponent on ρDCCA: A spatial cross-correlation pattern of precipitation records over eastern China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 579-590.
    8. Sandipan Ghosh & Sanat Guchhait, 2014. "Hydrogeomorphic variability due to dam constructions and emerging problems: a case study of Damodar River, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(3), pages 769-796, June.
    9. Nizamud Din Essa & Muneeb Aamir, 2019. "Analysis of Flood Damage Assessment through WorldView-2, Quick Bird and Multispectral Satellite Imagery in Southern Punjab, Pakistan," International Journal of Innovations in Science & Technology, 50sea, vol. 1(3), pages 120-139, July.
    10. Fumie Murata & Toru Terao & Taiichi Hayashi & Haruhisa Asada & Jun Matsumoto, 2008. "Relationship between atmospheric conditions at Dhaka, Bangladesh, and rainfall at Cherrapunjee, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(3), pages 399-410, March.
    11. Noor Fadhilah Ahmad Radi & Roslinazairimah Zakaria & Julia Piantadosi & John Boland & Wan Zawiah Wan Zin & Muhammad Az-zuhri Azman, 2017. "Generating Synthetic Rainfall Total Using Multivariate Skew-t and Checkerboard Copula of Maximum Entropy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1729-1744, March.
    12. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    13. Lo Magno, Giovanni L. & Ferrante, Mauro & De Cantis, Stefano, 2017. "A new index for measuring seasonality: A transportation cost approach," Mathematical Social Sciences, Elsevier, vol. 88(C), pages 55-65.
    14. Omvir Singh & Hawa Singh, 2015. "The response of farmers to the flood hazard under rice–wheat ecosystem in Somb basin of Haryana, India: an empirical study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 795-811, January.
    15. Cheng, Minghan & Jiao, Xiyun & Jin, Xiuliang & Li, Binbin & Liu, Kaihua & Shi, Lei, 2021. "Satellite time series data reveal interannual and seasonal spatiotemporal evapotranspiration patterns in China in response to effect factors," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Abhijit Das & Pritam Kumar Santra & Sunando Bandyopadhyay, 2021. "The 2016 flood of Bihar, India: an analysis of its causes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 751-769, May.
    17. M. Y. Safiah Yusmah & L. J. Bracken & Z. Sahdan & H. Norhaslina & M. D. Melasutra & A. Ghaffarianhoseini & S. Sumiliana & A. S. Shereen Farisha, 2020. "Understanding urban flood vulnerability and resilience: a case study of Kuantan, Pahang, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 551-571, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:89:y:2017:i:1:d:10.1007_s11069-017-2970-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.