IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v28y2003i1p1-33.html
   My bibliography  Save this article

Hydrometeorological Aspects of Floods in India

Author

Listed:
  • O. Dhar
  • Shobha Nandargi

Abstract

The Indian sub-continent being located in the heart of the summermonsoon belt, receives in most parts more than 75% of its annual rainfall during the fourmonsoon months of June to September. As the bulk of summer monsoon rainfall occurs withina period of four months, naturally majority of floods occur in Indian rivers during thisseason only. The ground conditions also help in generating high percentage of run-offbecause of the antecedent wet conditions caused by rainy spells occurring within the monsoonperiod itself. Besides mentioning different weather systems, which cause heavy rainfall and consequentfloods, a detailed discussion of 15 years' floods in different river systems has alsobeen given in the article. This study has shown that the flood problem in India is mostly confinedto the states located in the Indo-Gangetic plains, northeast India and occasionally in therivers of Central India. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • O. Dhar & Shobha Nandargi, 2003. "Hydrometeorological Aspects of Floods in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(1), pages 1-33, January.
  • Handle: RePEc:spr:nathaz:v:28:y:2003:i:1:p:1-33
    DOI: 10.1023/A:1021199714487
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1021199714487
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1021199714487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rajesh Kumar & Prasenjit Acharya, 2016. "Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 437-464, October.
    2. Fumie Murata & Toru Terao & Taiichi Hayashi & Haruhisa Asada & Jun Matsumoto, 2008. "Relationship between atmospheric conditions at Dhaka, Bangladesh, and rainfall at Cherrapunjee, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 44(3), pages 399-410, March.
    3. Abhijit Das & Pritam Kumar Santra & Sunando Bandyopadhyay, 2021. "The 2016 flood of Bihar, India: an analysis of its causes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 751-769, May.
    4. M. Y. Safiah Yusmah & L. J. Bracken & Z. Sahdan & H. Norhaslina & M. D. Melasutra & A. Ghaffarianhoseini & S. Sumiliana & A. S. Shereen Farisha, 2020. "Understanding urban flood vulnerability and resilience: a case study of Kuantan, Pahang, Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 551-571, March.
    5. Omvir Singh & Hawa Singh, 2015. "The response of farmers to the flood hazard under rice–wheat ecosystem in Somb basin of Haryana, India: an empirical study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 795-811, January.
    6. Paweł Prokop & Adam Walanus, 2017. "Impact of the Darjeeling–Bhutan Himalayan front on rainfall hazard pattern," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 387-404, October.
    7. S. Karuna Sagar & M. Rajeevan & S. Vijaya Bhaskara Rao, 2017. "On increasing monsoon rainstorms over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1743-1757, February.
    8. Hüseyin Çelik & Gonca Coskun & H. Cigizoglu & Necati Ağıralioğlu & Abdurrahim Aydın & A. Esin, 2012. "The analysis of 2004 flood on Kozdere Stream in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 461-477, September.
    9. Nizamud Din Essa & Muneeb Aamir, 2019. "Analysis of Flood Damage Assessment through WorldView-2, Quick Bird and Multispectral Satellite Imagery in Southern Punjab, Pakistan," International Journal of Innovations in Science & Technology, 50sea, vol. 1(3), pages 120-139, July.
    10. Rajeev Ranjan & Pankaj R. Dhote & Praveen K. Thakur & Shiv P. Aggarwal, 2022. "Investigation of basin characteristics: Implications for sub-basin-level vulnerability to flood peak generation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2797-2829, July.
    11. Ishfaq Hussain Malik, 2022. "Spatial dimension of impact, relief, and rescue of the 2014 flood in Kashmir Valley," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1911-1929, February.
    12. Sandipan Ghosh & Sanat Guchhait, 2014. "Hydrogeomorphic variability due to dam constructions and emerging problems: a case study of Damodar River, West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(3), pages 769-796, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:28:y:2003:i:1:p:1-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.