IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v88y2017i1d10.1007_s11069-017-2866-7.html
   My bibliography  Save this article

Fractal dimension and b value of the aftershock sequence of the 2008 M S 8.0 Wenchuan earthquake

Author

Listed:
  • WU Hao-Yu

    (Taiyuan University of Technology
    Earthquake Administration of Shanxi Province)

  • LIU Hong-Fu

    (Taiyuan University of Technology)

  • XU Wei-Jin

    (China Seismological Bureau)

  • WANG Xia

    (Earthquake Administration of Shanxi Province)

Abstract

This study analyzed the seismicity of aftershock events recorded around the earthquake fault area following the 2008 Ms 8.0 Wenchuan earthquake (China). We calculated the fractal dimension (D) and b value of the Gutenberg–Richter law for the aftershocks that occurred within one year of the original earthquake. The results showed that the D values of the earthquake fault ruptures reflected the complexities of the fault structures, and that higher D values were obtained for areas with larger fault slip and larger coseismic ground displacement. The b values for the Wenchuan aftershock sequence were relatively small, which indicated that the larger stress changes occurred in the area of the earthquake faults. Generally, b values are associated with the rupture mechanism of earthquake faults. Here, lower b values were correlated with those regions where thrust ruptures occurred and higher b values were found for those areas with strike-slip ruptures. More importantly, medium- and large-sized aftershocks appeared to occur primarily within areas with small D and b values. A positive correlation between b and D was established from the aftershock sequence, which is described by the relation D = 2b.

Suggested Citation

  • WU Hao-Yu & LIU Hong-Fu & XU Wei-Jin & WANG Xia, 2017. "Fractal dimension and b value of the aftershock sequence of the 2008 M S 8.0 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 315-325, August.
  • Handle: RePEc:spr:nathaz:v:88:y:2017:i:1:d:10.1007_s11069-017-2866-7
    DOI: 10.1007/s11069-017-2866-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2866-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2866-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Parsons & Chen Ji & Eric Kirby, 2008. "Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin," Nature, Nature, vol. 454(7203), pages 509-510, July.
    2. A. Singh & Indrajit Roy & Santosh Kumar & J. Kayal, 2015. "Seismic source characteristics in Kachchh and Saurashtra regions of Western India: b-value and fractal dimension mapping of aftershock sequences," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 33-49, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huai-zhong Yu & Jia Cheng & Qing-yong Zhu & Yong-ge Wan, 2011. "Critical sensitivity of load/unload response ratio and stress accumulation before large earthquakes: example of the 2008 Mw7.9 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 251-267, July.
    2. Wenzhe Tang & Jing Li & Zhen Lei & Enzhi Wang & Wenxin Shen, 2015. "Creating social–physical resilience to natural disasters: lessons from the Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1111-1132, November.
    3. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    4. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    5. Posadas, A. & Morales, J. & Ibañez, J.M. & Posadas-Garzon, A., 2021. "Shaking earth: Non-linear seismic processes and the second law of thermodynamics: A case study from Canterbury (New Zealand) earthquakes," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Junmei Kang & Zhihua Wang & Hongbin Cheng & Jun Wang & Xiaoliang Liu, 2022. "Remote Sensing Land Use Evolution in Earthquake-Stricken Regions of Wenchuan County, China," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    7. A. P. Singh & Abhijitsinh Parmar & Sumer Chopra, 2017. "Microtremor study for evaluating the site response characteristics in the Surat City of western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1145-1166, December.
    8. Yuejuan Chen & Jin Zhang & Anchao Zhou & Bo Yin, 2018. "Modeling and analysis of mining subsidence disaster chains based on stochastic Petri nets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 19-41, May.
    9. Shuai Qiu & Ming Xu & Yunpu Zheng & Renqiang Li & Michelle Wong & Liyun Zhang & Lixiang Liu & Changhong Lai & Wen Zhang, 2015. "Impacts of the Wenchuan earthquake on tree mortality and biomass carbon stock," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1261-1274, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:88:y:2017:i:1:d:10.1007_s11069-017-2866-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.