IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v89y2017i3d10.1007_s11069-017-3012-2.html
   My bibliography  Save this article

Microtremor study for evaluating the site response characteristics in the Surat City of western India

Author

Listed:
  • A. P. Singh

    (Institute of Seismological Research)

  • Abhijitsinh Parmar

    (Shankersinh Vaghela Bapu Institute of Technology)

  • Sumer Chopra

    (Institute of Seismological Research)

Abstract

The Surat City, which is the second most populated city in the state of Gujarat in western India, warrants site-specific seismic hazard assessment due to its rapid urbanization and proximity to major seismogenic zones. This study reports results of microtremor investigations at 72 single stations and 4 arrays in an area of 325 km2 spanning the city. The resonant frequencies, associated peak amplification values and liquefaction vulnerability indices were deduced from the horizontal to vertical spectral ratios. Ground amplification (AHVSR) in the range of 3.0–5.0 was observed in the 2.0–4.0-Hz frequency band at most of the sites. A secondary AHVSR between 2.0 and 3.0 is also observed in the 6.0–7.0-Hz frequency band at a few sites. Locales that are most susceptible to liquefaction are identified based on their vulnerability index (K g) exceeding the value of 10. The shear wave velocities (V s) ≥ 500 m/s inferred from array measurements occur at 38 m depth in the western part and ~16 m depth in the eastern part of city. The response spectra estimated from strong motion data recorded at an accelerograph site in Surat from three earthquakes of M w ≥ 3.2 that occurred in Kachchh, Saurashtra and Narmada regions are in accordance with our inferences of characteristic site frequencies and amplification. Our results, in agreement with the damage scenario during the 2001 Bhuj earthquake, provide valuable inputs for site-specific seismic hazard evaluation of the Surat City.

Suggested Citation

  • A. P. Singh & Abhijitsinh Parmar & Sumer Chopra, 2017. "Microtremor study for evaluating the site response characteristics in the Surat City of western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1145-1166, December.
  • Handle: RePEc:spr:nathaz:v:89:y:2017:i:3:d:10.1007_s11069-017-3012-2
    DOI: 10.1007/s11069-017-3012-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-3012-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-3012-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Singh & N. Annam & Santosh Kumar, 2014. "Assessment of predominant frequencies using ambient vibration in the Kachchh region of western India: implications for earthquake hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1291-1309, September.
    2. A. Singh & Indrajit Roy & Santosh Kumar & J. Kayal, 2015. "Seismic source characteristics in Kachchh and Saurashtra regions of Western India: b-value and fractal dimension mapping of aftershock sequences," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 33-49, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Mohammad Sadegh Sahraeian & Ali Kavand & Abbas Ghalandarzadeh, 2020. "Shear wave velocity profiling by inverse analysis of array microtremors for two cities in Iran: conventional derivative-based versus genetic algorithm inversion methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 335-363, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lenin Ávila-Barrientos & Luis A. Yegres-Herrera & Hortencia Flores-Estrella, 2023. "Characterization of landslides in Federal Highway 1D, Baja California, Mexico, using seismic noise records and the HVSR method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1281-1299, September.
    2. Raed Ahmad, 2016. "Seismic microzonation map of Syria using topographic slope and characteristics of surface soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1323-1347, January.
    3. Eren Pamuk & Özkan Cevdet Özdağ & Aykut Tunçel & Şenol Özyalın & Mustafa Akgün, 2018. "Local site effects evaluation for Aliağa/İzmir using HVSR (Nakamura technique) and MASW methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 887-899, January.
    4. Raed Ali Ahmad, 2016. "Seismic microzonation map of Syria using topographic slope and characteristics of surface soil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1323-1347, January.
    5. WU Hao-Yu & LIU Hong-Fu & XU Wei-Jin & WANG Xia, 2017. "Fractal dimension and b value of the aftershock sequence of the 2008 M S 8.0 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 315-325, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:89:y:2017:i:3:d:10.1007_s11069-017-3012-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.