IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i2d10.1007_s11069-017-2806-6.html
   My bibliography  Save this article

Spatiotemporal analysis of residential flood exposure in the Atlanta, Georgia metropolitan area

Author

Listed:
  • Alex P. Ferguson

    (National Weather Service Sioux Falls Weather Forecast Office)

  • Walker S. Ashley

    (Northern Illinois University)

Abstract

This research examines changes in residential built-environment flood exposure within the current boundaries of the Atlanta, Georgia metropolitan statistical area, by estimating the number of housing units that are located within the floodplains of the region. Housing unit data at the block level from the 1990 to 2010 decennial censuses are used to estimate housing unit exposure to floods using a binary dasymetric and proportional allocation method. Three different representations of the 100-year (1 percent annual chance) and 500-year (0.2 percent annual chance) floodplain are employed: the generally more conservative floodplains created using the Federal Emergency Management Agency’s Hazus-MH software, the generally more extensive floodplains included in the proprietary Flood Hazard Data product from KatRisk LLC and the regulatory floodplains from the National Flood Insurance Program. The number of housing units within both the 100- and 500-year floodplain increased from 1990 to 2010 throughout the Atlanta region. Housing unit growth within the regulatory 100-year flood zone was slower than growth elsewhere, suggesting that the National Flood Insurance Program may have been marginally effective overall. Results using the KatRisk product reveal both greater overall and a greater increase in housing units at risk within the 100-year floodplain than the regulatory product suggests. The results argue that heightened flood exposure, particularly in areas experiencing new development, is an important factor to consider when addressing the impact of the flood hazard over time.

Suggested Citation

  • Alex P. Ferguson & Walker S. Ashley, 2017. "Spatiotemporal analysis of residential flood exposure in the Atlanta, Georgia metropolitan area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 989-1016, June.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2806-6
    DOI: 10.1007/s11069-017-2806-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2806-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2806-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    2. Marius Paulikas & Walker Ashley, 2011. "Thunderstorm Hazard vulnerability for the Atlanta, Georgia metropolitan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1077-1092, September.
    3. Walker Ashley & Mace Bentley & J. Stallins, 2012. "Urban-induced thunderstorm modification in the Southeast United States," Climatic Change, Springer, vol. 113(2), pages 481-498, July.
    4. Alexander Fekete, 2012. "Spatial disaster vulnerability and risk assessments: challenges in their quality and acceptance," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1161-1178, April.
    5. Melanie Gall & Kevin A. Borden & Christopher T. Emrich & Susan L. Cutter, 2011. "The Unsustainable Trend of Natural Hazard Losses in the United States," Sustainability, MDPI, vol. 3(11), pages 1-25, November.
    6. Troy Rosencrants & Walker Ashley, 2015. "Spatiotemporal analysis of tornado exposure in five US metropolitan areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 121-140, August.
    7. Stephen Strader & Walker Ashley & James Walker, 2015. "Changes in volcanic hazard exposure in the Northwest USA from 1940 to 2100," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1365-1392, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    2. Stephen M. Strader, 2018. "Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 543-565, May.
    3. Caroline J. Williams & Rachel A. Davidson & Linda K. Nozick & Meghan Millea & Jamie L. Kruse & Joseph E. Trainor, 2023. "Single-family housing inventory projection method for natural hazard risk modeling applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 409-434, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiyao Zhu & Haibo Feng & Qiuhu Shao, 2023. "Evaluating Urban Flood Resilience within the Social-Economic-Natural Complex Ecosystem: A Case Study of Cities in the Yangtze River Delta," Land, MDPI, vol. 12(6), pages 1-22, June.
    2. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    3. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    4. Stephen M. Strader, 2018. "Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 543-565, May.
    5. Young Seok Song & Moo Jong Park, 2018. "A Study on Estimation Equation for Damage and Recovery Costs Considering Human Losses Focused on Natural Disasters in the Republic of Korea," Sustainability, MDPI, vol. 10(9), pages 1-16, August.
    6. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    7. Brennan, Timothy J., 2011. "Energy Efficiency Policy: Surveying the Puzzles," RFF Working Paper Series dp-11-27, Resources for the Future.
    8. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    9. Matteo Coronese & Francesco Lamperti & Francesca Chiaromonte & Andrea Roventini, 2018. "Natural Disaster Risk and the Distributional Dynamics of Damages," LEM Papers Series 2018/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    11. Qiang Zhang & Jianfeng Li & Vijay Singh & Yungang Bai, 2012. "SPI-based evaluation of drought events in Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 481-492, October.
    12. Abedifar, Pejman & Kashizadeh, Seyed Javad & Ongena, Steven, 2024. "Flood, farms and credit: The role of branch banking in the era of climate change," Journal of Corporate Finance, Elsevier, vol. 85(C).
    13. Nicholas A Cradock-Henry & Joanna Fountain & Franca Buelow, 2018. "Transformations for Resilient Rural Futures: The Case of Kaikōura, Aotearoa-New Zealand," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    14. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    15. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    16. Richard R. Shaker & Joseph Aversa & Victoria Papp & Bryant M. Serre & Brian R. Mackay, 2020. "Showcasing Relationships between Neighborhood Design and Wellbeing Toronto Indicators," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    17. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    18. Yang Yang & Lili Ren & Mingxuan Wu & Hailong Wang & Fengfei Song & L. Ruby Leung & Xin Hao & Jiandong Li & Lei Chen & Huimin Li & Liangying Zeng & Yang Zhou & Pinya Wang & Hong Liao & Jing Wang & Zhen, 2022. "Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. David Kabelka & David Kincl & Jan Vopravil & Jiří Brychta & Jan Bačovský, 2023. "Measuring of infiltration rate in different types of soil in the Czech Republic using a rainfall simulator," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(2), pages 128-137.
    20. Margot Hill Clarvis & Erin Bohensky & Masaru Yarime, 2015. "Can Resilience Thinking Inform Resilience Investments? Learning from Resilience Principles for Disaster Risk Reduction," Sustainability, MDPI, vol. 7(7), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:2:d:10.1007_s11069-017-2806-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.