IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i1d10.1007_s11069-017-2760-3.html
   My bibliography  Save this article

Numerical investigation of the influence of extreme hydrodynamic forces on the geometry of structures using OpenFOAM

Author

Listed:
  • Samieh Sarjamee

    (University of Ottawa)

  • Ioan Nistor

    (University of Ottawa)

  • Abdolmajid Mohammadian

    (University of Ottawa)

Abstract

The main focus of the present study is to numerically examine the effects of tsunami-like-induced hydrodynamic loading applied to free-standing structures with various architectural geometries. To accomplish these goals, the authors employed a multi-phase numerical model utilizing the volume of fluid method in the three-dimensional space. The second objective of the present study is to improve the understanding of hydrodynamic loads on structural components in order to develop practical guidelines for the engineering design of structures located in areas with a high risk of tsunami hazards. In order to evaluate the performance of the numerical model, the results of the simulation are compared with various available experimental data and physical modeling studies. The tsunami-like wave was reproduced via a sudden release of water located in an impounding reservoir located at the upstream part of a flume in the form of a dambreak wave. The shear force exerted by the hydrodynamic force on the square and round structures in the downstream area is estimated to obtain the value of tsunami loading. Finally, the validated numerical model is employed to examine the influence of the structure’s geometry on the hydrodynamic loads exerted on it.

Suggested Citation

  • Samieh Sarjamee & Ioan Nistor & Abdolmajid Mohammadian, 2017. "Numerical investigation of the influence of extreme hydrodynamic forces on the geometry of structures using OpenFOAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 213-235, May.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2760-3
    DOI: 10.1007/s11069-017-2760-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2760-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2760-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven Douglas & Ioan Nistor, 2015. "On the effect of bed condition on the development of tsunami-induced loading on structures using OpenFOAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1335-1356, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samieh Sarjamee & Ioan Nistor & Abdolmajid Mohammadian, 2017. "Large eddy simulation of extreme hydrodynamic forces on structures with mitigation walls using OpenFOAM," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1689-1707, February.
    2. Sjökvist, Linnea & Göteman, Malin, 2019. "Peak forces on a point absorbing wave energy converter impacted by tsunami waves," Renewable Energy, Elsevier, vol. 133(C), pages 1024-1033.
    3. Linnea Sjökvist & Malin Göteman, 2017. "Peak Forces on Wave Energy Linear Generators in Tsunami and Extreme Waves," Energies, MDPI, vol. 10(9), pages 1-19, September.
    4. Nora Asadollahi & Ioan Nistor & Abdolmajid Mohammadian, 2019. "Numerical investigation of tsunami bore effects on structures, part II: effects of bed condition on loading onto circular structures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 331-351, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2760-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.