IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v87y2017i1d10.1007_s11069-017-2755-0.html
   My bibliography  Save this article

Rapid flood inundation mapping using social media, remote sensing and topographic data

Author

Listed:
  • J. F. Rosser

    (University of Nottingham)

  • D. G. Leibovici

    (University of Nottingham)

  • M. J. Jackson

    (University of Nottingham)

Abstract

Flood events cause substantial damage to urban and rural areas. Monitoring water extent during large-scale flooding is crucial in order to identify the area affected and to evaluate damage. During such events, spatial assessments of floodwater may be derived from satellite or airborne sensing platforms. Meanwhile, an increasing availability of smartphones is leading to documentation of flood events directly by individuals, with information shared in real-time using social media. Topographic data, which can be used to determine where floodwater can accumulate, are now often available from national mapping or governmental repositories. In this work, we present and evaluate a method for rapidly estimating flood inundation extent based on a model that fuses remote sensing, social media and topographic data sources. Using geotagged photographs sourced from social media, optical remote sensing and high-resolution terrain mapping, we develop a Bayesian statistical model to estimate the probability of flood inundation through weights-of-evidence analysis. Our experiments were conducted using data collected during the 2014 UK flood event and focus on the Oxford city and surrounding areas. Using the proposed technique, predictions of inundation were evaluated against ground-truth flood extent. The results report on the quantitative accuracy of the multisource mapping process, which obtained area under receiver operating curve values of 0.95 and 0.93 for model fitting and testing, respectively.

Suggested Citation

  • J. F. Rosser & D. G. Leibovici & M. J. Jackson, 2017. "Rapid flood inundation mapping using social media, remote sensing and topographic data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 103-120, May.
  • Handle: RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2755-0
    DOI: 10.1007/s11069-017-2755-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2755-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2755-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Apel & G. Aronica & H. Kreibich & A. Thieken, 2009. "Flood risk analyses—how detailed do we need to be?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 79-98, April.
    2. Yu Xiao & Qunying Huang & Kai Wu, 2015. "Understanding social media data for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1663-1679, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Hao & Heng Lyu & Ze Wang & Shengnan Fu & Chi Zhang, 2022. "Estimating the spatial-temporal distribution of urban street ponding levels from surveillance videos based on computer vision," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1799-1812, April.
    2. Vijendra Kumar & Hazi Md. Azamathulla & Kul Vaibhav Sharma & Darshan J. Mehta & Kiran Tota Maharaj, 2023. "The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management," Sustainability, MDPI, vol. 15(13), pages 1-33, July.
    3. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    4. Sahil & Sandeep Kumar Sood, 2021. "Bibliometric monitoring of research performance in ICT-based disaster management literature," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(1), pages 103-132, February.
    5. Hamed Farahmand & Wanqiu Wang & Ali Mostafavi & Mikel Maron, 2022. "Anomalous human activity fluctuations from digital trace data signal flood inundation status," Environment and Planning B, , vol. 49(7), pages 1893-1911, September.
    6. Jiexiong Duan & Weixin Zhai & Chengqi Cheng, 2020. "Crowd Detection in Mass Gatherings Based on Social Media Data: A Case Study of the 2014 Shanghai New Year’s Eve Stampede," IJERPH, MDPI, vol. 17(22), pages 1-14, November.
    7. Clemens Havas & Bernd Resch, 2021. "Portability of semantic and spatial–temporal machine learning methods to analyse social media for near-real-time disaster monitoring," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2939-2969, September.
    8. Zhongping Zeng & Yujia Li & Jinyu Lan & Abdur Rahim Hamidi, 2021. "Utilizing User-Generated Content and GIS for Flood Susceptibility Modeling in Mountainous Areas: A Case Study of Jian City in China," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    9. Muhammad Ashraf Fauzi, 2023. "Social media in disaster management: review of the literature and future trends through bibliometric analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 953-975, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    2. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    3. Anna Rita Scorzini & Maurizio Leopardi, 2017. "River basin planning: from qualitative to quantitative flood risk assessment: the case of Abruzzo Region (central Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 71-93, August.
    4. Alekh Gour & Shikha Aggarwal & Subodha Kumar, 2022. "Lending ears to unheard voices: An empirical analysis of user‐generated content on social media," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2457-2476, June.
    5. Khalid Oubennaceur & Karem Chokmani & Florence Lessard & Yves Gauthier & Catherine Baltazar & Jean-Patrick Toussaint, 2022. "Understanding Flood Risk Perception: A Case Study from Canada," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    6. Jyoti Prakash Singh & Yogesh K. Dwivedi & Nripendra P. Rana & Abhinav Kumar & Kawaljeet Kaur Kapoor, 2019. "Event classification and location prediction from tweets during disasters," Annals of Operations Research, Springer, vol. 283(1), pages 737-757, December.
    7. Ji-Wan Lee & Chung-Gil Jung & Jee-Hun Chung & Seong-Joon Kim, 2019. "The relationship among meteorological, agricultural, and in situ news-generated big data on droughts," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 765-781, September.
    8. Song-Yue Yang & Che-Hao Chang & Chih-Tsung Hsu & Shiang-Jen Wu, 2022. "Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2297-2315, April.
    9. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    10. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    11. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.
    12. Fabio Cian & Carlo Giupponi & Mattia Marconcini, 2021. "Integration of earth observation and census data for mapping a multi-temporal flood vulnerability index: a case study on Northeast Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2163-2184, April.
    13. Rosa Fernández Ropero & María Julia Flores & Rafael Rumí, 2022. "Bayesian Networks for Preprocessing Water Management Data," Mathematics, MDPI, vol. 10(10), pages 1-18, May.
    14. Philip Bubeck & Lisa Dillenardt & Lorenzo Alfieri & Luc Feyen & Annegret H. Thieken & Patric Kellermann, 2019. "Global warming to increase flood risk on European railways," Climatic Change, Springer, vol. 155(1), pages 19-36, July.
    15. Stefano Morelli & Veronica Pazzi & Olga Nardini & Sara Bonati, 2022. "Framing Disaster Risk Perception and Vulnerability in Social Media Communication: A Literature Review," Sustainability, MDPI, vol. 14(15), pages 1-28, July.
    16. Cheng-Chun Lee & Mikel Maron & Ali Mostafavi, 2022. "Community-scale big data reveals disparate impacts of the Texas winter storm of 2021 and its managed power outage," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    17. Anthi-Eirini Vozinaki & George Karatzas & Ioannis Sibetheros & Emmanouil Varouchakis, 2015. "An agricultural flash flood loss estimation methodology: the case study of the Koiliaris basin (Greece), February 2003 flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 899-920, November.
    18. Oluwatofunmi Deborah Aribisala & Sang-Guk Yum & Manik Das Adhikari & Moon-Soo Song, 2022. "Flood Damage Assessment: A Review of Microscale Methodologies for Residential Buildings," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
    19. G. Papaioannou & A. Loukas & L. Vasiliades & G. T. Aronica, 2016. "Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 117-132, October.
    20. Dominik Paprotny & Paweł Terefenko, 2017. "New estimates of potential impacts of sea level rise and coastal floods in Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1249-1277, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:87:y:2017:i:1:d:10.1007_s11069-017-2755-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.