IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i1d10.1007_s11069-016-2427-5.html
   My bibliography  Save this article

Linking land subsidence over the Yellow River delta, China, to hydrocarbon exploitation using multi-temporal InSAR

Author

Listed:
  • Yilin Liu

    (Chinese Academy of Sciences)

  • Haijun Huang

    (Chinese Academy of Sciences)

  • Yanxia Liu

    (Chinese Academy of Sciences)

  • Haibo Bi

    (Chinese Academy of Sciences
    Qingdao National Laboratory for Marine Science and Technology)

Abstract

The Yellow River delta, the second largest oil and gas base of China, has been subsiding due to the combination effects of human and natural factors. Increasing anthropogenic activities, like hydrocarbon exploitation, accelerate the subsidence, gradually threatening the stability of infrastructures and causing the inhabitants more vulnerable to natural hazards. Interferometric synthetic aperture radar (InSAR) techniques can measure ground movements in high resolution. The purpose of this study is to map the spatial and temporal variations in surface deformation over the Yellow River delta using a Small Baseline Subset InSAR technique and to assess the role of hydrocarbon exploitation in subsidence. The Stanford Method for Persistent Scatterers/Multi-Temporal InSAR (StaMPS/MTI) package is employed to process ENVISAT ASAR images collected from 2007 to 2010. InSAR-derived surface deformation measurements are then compared to geological and petroleum geologic data, oil field data and hydrocarbon reservoir inversion information to address the causes of the observed subsidence. Spirit leveling data and standard deviation maps are used to verify the InSAR results and measurement accuracy. Consistent results of the two descending tracks indicate subsidence up to 40 mm/yr over oil field. The time-series deformation manifests that subsidence area and peak broaden over time and subsidence rate are approximately constant in Shikou oil field, while the rate decreases in Dongying oil field since 2009. Moreover, our results indicate that the land subsidence pattern is concentrated in hydrocarbon exploration field and has a good consistency with faults distributions. In addition, a multiple finite prolate ellipsoid sources model is implemented to model the InSAR-derived deformation in Shikou oil field. The model manifests that land subsidence and hydrocarbon exploitation can be quantitatively linked to each other. The intimate connection of surface deformation with reservoir change suggests that land subsidence over oil field in the Yellow River delta is primarily caused by hydrocarbon exploitation. The results provide new insights into the land subsidence mechanism in the Yellow River delta.

Suggested Citation

  • Yilin Liu & Haijun Huang & Yanxia Liu & Haibo Bi, 2016. "Linking land subsidence over the Yellow River delta, China, to hydrocarbon exploitation using multi-temporal InSAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 271-291, October.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-016-2427-5
    DOI: 10.1007/s11069-016-2427-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2427-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2427-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timothy H. Dixon & Falk Amelung & Alessandro Ferretti & Fabrizio Novali & Fabio Rocca & Roy Dokka & Giovanni Sella & Sang-Wan Kim & Shimon Wdowinski & Dean Whitman, 2006. "Subsidence and flooding in New Orleans," Nature, Nature, vol. 441(7093), pages 587-588, June.
    2. Yong Liu & Hai-Jun Huang, 2013. "Characterization and mechanism of regional land subsidence in the Yellow River Delta, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 687-709, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herimitsinjo Rajaoalison & Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2022. "A Multidisciplinary Approach to Evaluate the Environmental Impacts of Hydrocarbon Production in Khuzestan Province, Iran," Energies, MDPI, vol. 15(22), pages 1-19, November.
    2. Ali Mehrabi, 2021. "Monitoring the Iran Pol-e-Dokhtar flood extent and detecting its induced ground displacement using sentinel 1 imagery techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2603-2617, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig E. Landry & Dylan Turner & Daniel Petrolia, 2021. "Flood Insurance Market Penetration and Expectations of Disaster Assistance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 357-386, June.
    2. Zhaoqing Yang & Taiping Wang & Ruby Leung & Kathy Hibbard & Tony Janetos & Ian Kraucunas & Jennie Rice & Benjamin Preston & Tom Wilbanks, 2014. "A modeling study of coastal inundation induced by storm surge, sea-level rise, and subsidence in the Gulf of Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1771-1794, April.
    3. Biswajeet Pradhan & Mohammed Abokharima & Mustafa Jebur & Mahyat Tehrany, 2014. "Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1019-1042, September.
    4. Huizhi Duan & Yongsheng Li & Bingquan Li & Hao Li, 2022. "Fast InSAR Time-Series Analysis Method in a Full-Resolution SAR Coordinate System: A Case Study of the Yellow River Delta," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    5. Sen Zheng & Chongshi Gu & Chenfei Shao & Yating Hu & Yanxin Xu & Xiaoyu Huang, 2023. "A Novel Prediction Model for Seawall Deformation Based on CPSO-WNN-LSTM," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
    6. Susan Hanson & Robert Nicholls & N. Ranger & S. Hallegatte & J. Corfee-Morlot & C. Herweijer & J. Chateau, 2011. "A global ranking of port cities with high exposure to climate extremes," Climatic Change, Springer, vol. 104(1), pages 89-111, January.
    7. Yongyong Li & Huili Gong & Lin Zhu & Xiaojuan Li & Rong Wang & Gaoxuan Guo, 2017. "Characterizing land displacement in complex hydrogeological and geological settings: a case study in the Beijing Plain, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 323-343, May.
    8. Zhen-Dong Cui & Qiang Yuan, 2015. "Study on the settlement caused by the Maglev train," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1767-1778, January.
    9. Jin-Zhi Zhang & Hai-jun Huang & Hai-bo Bi, 2015. "Land subsidence in the modern Yellow River Delta based on InSAR time series analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2385-2397, February.
    10. Erica Tauzer & Mercy J. Borbor-Cordova & Telmo de la Cuadra & Susana del Granado & Carol Franco-Bellini & Carlos Medina & Jhoyzette Mendoza & Moory M. Romero-Fernandez & Anna M. Stewart-Ibarra, 2017. "A Vulnerability Research Framework for the Development of Early Warning Systems for Floods," Development Research Working Paper Series 02/2017, Institute for Advanced Development Studies.
    11. Qiwei Yu & Alexis K. H. Lau & Kang T. Tsang & Jimmy C. H. Fung, 2018. "Human damage assessments of coastal flooding for Hong Kong and the Pearl River Delta due to climate change-related sea level rise in the twenty-first century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 1011-1038, June.
    12. Li Ping & Li Pei-Ying & Du Jun, 2014. "Hazardous geology zoning and influence factors in the near-shore shallow strata and seabed surface of the modern Yellow River Delta, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 2107-2126, September.
    13. Gómez-Baggethun, Erik & Barton, David N., 2013. "Classifying and valuing ecosystem services for urban planning," Ecological Economics, Elsevier, vol. 86(C), pages 235-245.
    14. Jun Wang & Wei Gao & Shiyuan Xu & Lizhong Yu, 2012. "Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China," Climatic Change, Springer, vol. 115(3), pages 537-558, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:1:d:10.1007_s11069-016-2427-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.