IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v82y2016i3d10.1007_s11069-016-2303-3.html
   My bibliography  Save this article

Spatiotemporal patterns of precipitation regimes in the Huai River basin, China, and possible relations with ENSO events

Author

Listed:
  • Yue Wang

    (Sun Yat-sen University
    Sun Yat-sen University
    Guangxi Normal University)

  • Qiang Zhang

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Vijay P. Singh

    (Texas A&M University
    Texas A&M University)

Abstract

Under the influence of El Niño/Southern Oscillation (ENSO), the Southern Oscillation Index events, changes in precipitation intensity and duration thereon in both space and time in the Huai River basin, China, are investigated. Different behaviors of precipitation intensity and duration during different ENSO episodes were also analyzed, and significance of these changes was evaluated using Mann–Whitney U test method. Results of this study indicate that: (1) the north Huai River basin is dominated by decreasing precipitation, specifically in the Yi-Shu-Si River basin, and increasing precipitation in the south Huai River basin. Increasing number of annual maximum consecutive dry days, decreasing number of annual maximum consecutive wet days (MCD) and decreasing precipitation amount of annual maximum consecutive wet days (MCP) indicate a drying tendency in the northern parts of the Huai River basin, implying intensifying droughts. However, a wetting tendency is observed in the southeast parts of the Huai River basin as a result of increasing annual total precipitation amount and increasing MCD and MCP; (2) the influence of Eastern Pacific Warming (EPW), Central Pacific Warming (CPW) and Eastern Pacific Cooling (EPC) on heavy precipitation and rainstorms is evident. There is more significant influence of EPC on rainstorms. EPW and CPW cause a higher risk of flooding in the south Huai River basin, whereas EPC causes a higher risk of flooding in the north Huai River basin; (3) longer-lasting precipitation events are observed to be decreasing during the EPC and CPW periods, whereas occurrences of longer-lasting precipitation events are found to be increasing during the EPW period. This study is of practical value in planning and management of agricultural irrigation and water resources and helps understand the influence of ENSO events on precipitation regimes in the Huai River basin, China.

Suggested Citation

  • Yue Wang & Qiang Zhang & Vijay P. Singh, 2016. "Spatiotemporal patterns of precipitation regimes in the Huai River basin, China, and possible relations with ENSO events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 2167-2185, July.
  • Handle: RePEc:spr:nathaz:v:82:y:2016:i:3:d:10.1007_s11069-016-2303-3
    DOI: 10.1007/s11069-016-2303-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2303-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2303-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yongyong Zhang & Jun Xia & Tao Liang & Quanxi Shao, 2010. "Impact of Water Projects on River Flow Regimes and Water Quality in Huai River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 889-908, March.
    2. P. C. D. Milly & R. T. Wetherald & K. A. Dunne & T. L. Delworth, 2002. "Increasing risk of great floods in a changing climate," Nature, Nature, vol. 415(6871), pages 514-517, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. V. Timbadiya & K. M. Krishnamraju, 2023. "A 2D hydrodynamic model for river flood prediction in a coastal floodplain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1143-1165, January.
    2. Berlemann, Michael, 2015. "Hurricane Risk, Happiness and Life Satisfaction. Some Empirical Evidence on the Indirect Effects of Natural Disasters," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113073, Verein für Socialpolitik / German Economic Association.
    3. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.
    4. Teodor Kitczak & Heidi Jänicke & Marek Bury & Ryszard Malinowski, 2021. "The Usefulness of Mixtures with Festulolium braunii for the Regeneration of Grassland under Progressive Climate Change," Agriculture, MDPI, vol. 11(6), pages 1-20, June.
    5. Zbigniew Kundzewicz & Nicola Lugeri & Rutger Dankers & Yukiko Hirabayashi & Petra Döll & Iwona Pińskwar & Tomasz Dysarz & Stefan Hochrainer & Piotr Matczak, 2010. "Assessing river flood risk and adaptation in Europe—review of projections for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 641-656, October.
    6. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    7. Michael Bernardi & Christa Hainz & Paulina Maier & Maria Waldinger, 2023. "A “Green Revolution” for Sub-Saharan Africa? Challenges and Opportunities," EconPol Policy Brief 54, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    8. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    9. Peng Shi & Xinxin Ma & Yuanbing Hou & Qiongfang Li & Zhicai Zhang & Simin Qu & Chao Chen & Tao Cai & Xiuqin Fang, 2013. "Effects of Land-Use and Climate Change on Hydrological Processes in the Upstream of Huai River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1263-1278, March.
    10. Pei Zhao & Xiangyu Tang & Jialiang Tang & Chao Wang, 2013. "Assessing Water Quality of Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to 2011," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4545-4558, October.
    11. Pratyush Tripathy & Teja Malladi, 2022. "Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1341-1363, November.
    12. Sechindra Vallury & Bryan Leonard, 2022. "Canals, climate, and corruption: The provisioning of public infrastructure under uncertainty," Economics and Politics, Wiley Blackwell, vol. 34(1), pages 221-252, March.
    13. C. Zhao & C. Sun & J. Xia & X. Hao & G. Li & K. Rebensburg & C. Liu, 2010. "An Impact Assessment Method of Dam/Sluice on Instream Ecosystem and its Application to the Bengbu Sluice of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4551-4565, December.
    14. Hongwu Tang & Hao Cao & Saiyu Yuan & Yang Xiao & Chenyu Jiang & Carlo Gualtieri, 2020. "A Numerical Study of Hydrodynamic Processes and Flood Mitigation in a Large River-lake System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3739-3760, September.
    15. repec:fpr:2020cp:5(5 is not listed on IDEAS
    16. Jan Skála & Radim Vácha & Pavel Čupr, 2018. "Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    17. David Ocio & Christian Stocker & Ángel Eraso & Arantza Martínez & José María Sanz Galdeano, 2016. "Towards a reliable and cost-efficient flood risk management: the case of the Basque Country (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 617-639, March.
    18. Yun Xing & Huili Chen & Qiuhua Liang & Xieyao Ma, 2022. "Improving the performance of city-scale hydrodynamic flood modelling through a GIS-based DEM correction method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2313-2335, July.
    19. David Marcolino Nielsen & Marcio Cataldi & André Luiz Belém & Ana Luiza Spadano Albuquerque, 2016. "Local indices for the South American monsoon system and its impacts on Southeast Brazilian precipitation patterns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 909-928, September.
    20. Hongyan Ren & Xia Wan & Fei Yang & Xiaoming Shi & Jianwei Xu & Dafang Zhuang & Gonghuan Yang, 2014. "Association between Changing Mortality of Digestive Tract Cancers and Water Pollution: A Case Study in the Huai River Basin, China," IJERPH, MDPI, vol. 12(1), pages 1-13, December.
    21. Andrew C. Ross & Raymond G. Najjar, 2019. "Evaluation of methods for selecting climate models to simulate future hydrological change," Climatic Change, Springer, vol. 157(3), pages 407-428, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:82:y:2016:i:3:d:10.1007_s11069-016-2303-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.