IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i2p1231-1241.html
   My bibliography  Save this article

Coastal economic vulnerability to sea level rise of Bohai Rim in China

Author

Listed:
  • Ting Wu
  • Xiyong Hou
  • Qing Chen

Abstract

Through index-based method, the coastal economic vulnerability of Bohai Rim in China to the hypothetical local scenario of 1-m relative sea level rise by the end of twenty-first century was assessed (note that 1-m global sea level rise throughout the twenty-first century is highly improbable). Both physical and socioeconomic variables were considered, and the comparison between physical vulnerability and economic vulnerability was conducted to identify effects of socioeconomic variables on coastal susceptibility to sea level rise. The assessment was carried out at shoreline segments scale as well as at county-level scale, and the results were as follows: The combination of geomorphology and terrain plays the determinant role, since the gently sloped coasts with softer substances are always both physical and economic susceptible to the projected inundation scenario; potential displaced population and GDP loss have more influence on economic vulnerability than reclamation density in that the most intensively reclaimed areas are not always high vulnerable, while the areas that may suffer from the largest potential displaced population and GDP loss are always high vulnerable; the method employed in this study is sensitive in identifying the relative difference in economic vulnerability; moreover, it is capable of handling the issues caused by mutual offset effects between land-controlling impacts and marine-controlling impacts. The insights offered by this study could inform the coastal managers in optimizing allocation of limited resources and, consequentially, assist them to sequence policy, planning and management choices efficiently and effectively to adapt to the sea level rise. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Ting Wu & Xiyong Hou & Qing Chen, 2016. "Coastal economic vulnerability to sea level rise of Bohai Rim in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1231-1241, January.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:2:p:1231-1241
    DOI: 10.1007/s11069-015-2020-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-2020-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-2020-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Matthew L. Kirwan & J. Patrick Megonigal, 2013. "Tidal wetland stability in the face of human impacts and sea-level rise," Nature, Nature, vol. 504(7478), pages 53-60, December.
    2. Saudamini Das, 2012. "The role of natural ecosystems and socio-economic factors in the vulnerability of coastal villages to cyclone and storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 531-546, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komali Kantamaneni, 2016. "Coastal infrastructure vulnerability: an integrated assessment model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 139-154, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zhen-Ming & Guo, Hai-Qiang & Zhao, Bin & Zhang, Chao & Peltola, Heli & Zhang, Li-Quan, 2016. "Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: A coupled modeling approach," Ecological Modelling, Elsevier, vol. 321(C), pages 110-120.
    2. Hermine Vedogbeton & Robert J. Johnston, 2020. "Commodity Consistent Meta-Analysis of Wetland Values: An Illustration for Coastal Marsh Habitat," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 835-865, April.
    3. repec:ags:aaea22:335970 is not listed on IDEAS
    4. Danghan Xie & Christian Schwarz & Maarten G. Kleinhans & Karin R. Bryan & Giovanni Coco & Stephen Hunt & Barend van Maanen, 2023. "Mangrove removal exacerbates estuarine infilling through landscape-scale bio-morphodynamic feedbacks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Panpan Cui & Fangli Su & Fang Zhou, 2022. "Inundation Depth Shape Phenotypic Variability of Phragmites australis in Liaohe Estuary Wetland, Northeast China," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    6. Ariana E. Sutton-Grier & Rachel K. Gittman & Katie K. Arkema & Richard O. Bennett & Jeff Benoit & Seth Blitch & Kelly A. Burks-Copes & Allison Colden & Alyssa Dausman & Bryan M. DeAngelis & A. Randall, 2018. "Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts," Sustainability, MDPI, vol. 10(2), pages 1-11, February.
    7. Wu, Wei & Yeager, Kevin M. & Peterson, Mark S. & Fulford, Richard S., 2015. "Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)," Ecological Modelling, Elsevier, vol. 303(C), pages 55-69.
    8. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    9. Mukherjee, Jenia & Ghosh, Pritwinath, 2020. "Fluid Epistemologies: The Social Saga of Sediments in Bengal," Ecology, Economy and Society - the INSEE Journal, Indian Society of Ecological Economics (INSEE), vol. 3(02), July.
    10. Bregje K. van Wesenbeeck & Wiebe de Boer & Siddharth Narayan & Wouter R. L. van der Star & Mindert B. de Vries, 2017. "Coastal and riverine ecosystems as adaptive flood defenses under a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1087-1094, October.
    11. Nana Luo & Rui Yu & Bolong Wen, 2024. "Characteristics of Changes in Typical Mountain Wetlands in the Middle and High Latitudes of China over the Past 30 Years," Land, MDPI, vol. 13(8), pages 1-18, July.
    12. Tracy Elsey-Quirk & Austin Lynn & Michael Derek Jacobs & Rodrigo Diaz & James T. Cronin & Lixia Wang & Haosheng Huang & Dubravko Justic, 2024. "Vegetation dieback in the Mississippi River Delta triggered by acute drought and chronic relative sea-level rise," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Davis, Melanie J. & Woo, Isa & De La Cruz, Susan E.W., 2019. "Development and implementation of an empirical habitat change model and decision support tool for estuarine ecosystems," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    14. Fan Xu & Zeng Zhou & Sergio Fagherazzi & Andrea D’Alpaos & Ian Townend & Kun Zhao & Weiming Xie & Leicheng Guo & Xianye Wang & Zhong Peng & Zhicheng Yang & Chunpeng Chen & Guangcheng Cheng & Yuan Xu &, 2024. "Anomalous scaling of branching tidal networks in global coastal wetlands and mudflats," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Vinent, Orencio Duran & Johnston, Robert J. & Kirwan, Matthew L. & Leroux, Anke D. & Martin, Vance L., 2019. "Coastal dynamics and adaptation to uncertain sea level rise: Optimal portfolios for salt marsh migration," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    16. Zezheng Liu & Sergio Fagherazzi & Qiang He & Olivier Gourgue & Junhong Bai & Xinhui Liu & Chiyuan Miao & Zhan Hu & Baoshan Cui, 2024. "A global meta-analysis on the drivers of salt marsh planting success and implications for ecosystem services," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Binglin Liu & Haotian Wu & Zhenke Zhang & Guoen Wei & Yue Wang & Jie Zheng & Xuepeng Ji & Shengnan Jiang, 2021. "Recent Evolution of the Intertidal Sand Ridge Lines of the Dongsha Shoal in the Modern Radial Sand Ridges, East China," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    18. Malay Kumar Pramanik & Sumantra Sarathi Biswas & Biswajit Mondal & Raghunath Pal, 2016. "Coastal vulnerability assessment of the predicted sea level rise in the coastal zone of Krishna–Godavari delta region, Andhra Pradesh, east coast of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(6), pages 1635-1655, December.
    19. Mo, Yu & Momen, Bahram & Kearney, Michael S., 2015. "Quantifying moderate resolution remote sensing phenology of Louisiana coastal marshes," Ecological Modelling, Elsevier, vol. 312(C), pages 191-199.
    20. Kaihang Zhou & Scott Hawken, 2023. "Climate-Related Sea Level Rise and Coastal Wastewater Treatment Infrastructure Futures: Landscape Planning Scenarios for Negotiating Risks and Opportunities in Australian Urban Areas," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
    21. Minghui Zhu & Xiaoming Xia & Yining Chen & Xinkai Wang & Yifei Liu & Ziyan Zhang & Jun Zheng, 2023. "Spatiotemporal Variation of Tidal Wetlands Affected by Human Activities during the Past 50 Years: A Case Study of Yueqing Bay in Eastern China," Land, MDPI, vol. 12(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:2:p:1231-1241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.