IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v80y2016i1p23-42.html
   My bibliography  Save this article

Trend of water resource amount, drought frequency, and agricultural exposure to water stresses in the karst regions of South China

Author

Listed:
  • Long Wan
  • Jinxing Zhou
  • Hongyan Guo
  • Ming Cui
  • Yuguo Liu

Abstract

Frequent drought occurrences have adverse effects on the availability of water resources and have consequently caused growing risks of water-related stresses in the karst regions of South China. For better water management, we investigated the trend of water resources in the past five decades and analyzed the drought frequency distribution in these regions with the of regional water resource amount series. Moreover, we assessed the decadal variability in the agricultural exposure to water stresses in the karst regions of South China. Results indicated that water resources were had a lower amount in most provinces during 2000–2013. Compared with 1961–1999, 2000–2013 showed a decline of 1139.3 × 10 8 m 3 (8.51 %) in the average annual water resources. From the periodic pattern analysis, the periods 1987–1988 and 2009–2011 experienced a negative phase and the lowest amount of water resources in the cycle period of 20 years (dominant cycle period). The generated GEV distribution was a good fit to the probability distribution of extremely low water resource amount. Based on the analysis results, low water resource amount (lower than the value with a return period of 10 years) occurred 2.5 times on average in every province during 2000–2013. Moreover, the agricultural exposures to water stresses were investigated and found to exhibit different degrees of severity across regions and decades. The proportions of agriculture land areas exposed to water stresses in the 1960s, 1970s, 1980s, and 1990s are 39.31, 42.15, 41.28, and 45.78 %, respectively. In the 2000s, more and more agricultural lands (about 68.37 %) were exposed to water stresses, mainly in Yunnan, Guangzhou, Guangxi, and Sichuan. Particularly, large areas exhibited high agricultural exposures to water stresses in 2006 and 2009. The karst regions of south China are facing great challenges in managing water resources against droughts. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • Long Wan & Jinxing Zhou & Hongyan Guo & Ming Cui & Yuguo Liu, 2016. "Trend of water resource amount, drought frequency, and agricultural exposure to water stresses in the karst regions of South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 23-42, January.
  • Handle: RePEc:spr:nathaz:v:80:y:2016:i:1:p:23-42
    DOI: 10.1007/s11069-015-1954-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1954-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1954-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Demetris Koutsoyiannis & George Baloutsos, 2000. "Analysis of a Long Record of Annual Maximum Rainfall in Athens, Greece, and Design Rainfall Inferences," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 22(1), pages 29-48, July.
    2. Alexander Garcia-Aristizabal & Edoardo Bucchignani & Elisa Palazzi & Donatella D’Onofrio & Paolo Gasparini & Warner Marzocchi, 2015. "Analysis of non-stationary climate-related extreme events considering climate change scenarios: an application for multi-hazard assessment in the Dar es Salaam region, Tanzania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 289-320, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Zhang & Shiqi Yang & Shengtian Yang & Li Fan & Xu Zhou, 2023. "Spatio-Temporal Variations of Ecosystem Water Use Efficiency and Its Drivers in Southwest China," Land, MDPI, vol. 12(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jithitikulchai, Theepakorn, 2023. "The effect of climate change and agricultural diversification on the total value of agricultural output of farm households in Sub-Saharan Africa," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 18(2), October.
    2. Lan-Fen Chu & Michael McAleer & Szu-Hua Wang, 2012. "Statistical Modelling of Recent Changes in Extreme Rainfall in Taiwan," Tinbergen Institute Discussion Papers 13-004/III, Tinbergen Institute.
    3. Jonas Smit Andersen & Sara Maria Lerer & Antje Backhaus & Marina Bergen Jensen & Hjalte Jomo Danielsen Sørup, 2017. "Characteristic Rain Events: A Methodology for Improving the Amenity Value of Stormwater Control Measures," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    4. Khaled Haddad & Ataur Rahman, 2014. "Derivation of short-duration design rainfalls using daily rainfall statistics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1391-1401, December.
    5. Amir AghaKouchak & Nasrin Nasrollahi, 2010. "Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1229-1249, April.
    6. Matteo Gentilucci & Alessandro Rossi & Niccolò Pelagagge & Domenico Aringoli & Maurizio Barbieri & Gilberto Pambianchi, 2023. "GEV Analysis of Extreme Rainfall: Comparing Different Time Intervals to Analyse Model Response in Terms of Return Levels in the Study Area of Central Italy," Sustainability, MDPI, vol. 15(15), pages 1-25, July.
    7. Lan-Fen Chu & Michael McAleer & Ching-Chung Chang, 2012. "Statistical Modelling of Extreme Rainfall in Taiwan," KIER Working Papers 835, Kyoto University, Institute of Economic Research.
    8. Emmanuel Afuecheta & Chigozie Utazi & Edmore Ranganai & Chibuzor Nnanatu, 2023. "An Application of Extreme Value Theory for Measuring Financial Risk in BRICS Economies," Annals of Data Science, Springer, vol. 10(2), pages 251-290, April.
    9. Caterina Negulescu & Abed Benaïchouche & Anne Lemoine & Sylvestre Roy & Rodrigo Pedreros, 2020. "Adjustability of exposed elements by updating their capacity for resistance after a damaging event: application to an earthquake–tsunami cascade scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 753-793, October.
    10. Yanxu Liu & Shuangshuang Li & Yanglin Wang & Tian Zhang & Jian Peng & Tianyi Li, 2015. "Identification of multiple climatic extremes in metropolis: a comparison of Guangzhou and Shenzhen, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 939-953, November.
    11. Ioannis M. Kourtis & Ioannis Nalbantis & George Tsakiris & Basil Ε. Psiloglou & Vassilios A. Tsihrintzis, 2023. "Updating IDF Curves Under Climate Change: Impact on Rainfall-Induced Runoff in Urban Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2403-2428, May.
    12. I. E. Okorie & A. C. Akpanta & J. Ohakwe & D. C. Chikezie & C. U. Onyemachi & M. C. Ugwu, 2019. "A Note on Modeling the Maxima of Lagos Rainfall," Annals of Data Science, Springer, vol. 6(2), pages 341-359, June.
    13. Hakan Aksu & Mahmut Cetin & Hafzullah Aksoy & Sait Genar Yaldiz & Isilsu Yildirim & Gulsah Keklik, 2022. "Spatial and temporal characterization of standard duration-maximum precipitation over Black Sea Region in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2379-2405, April.
    14. Md. Arif Chowdhury & Rashed Uz Zzaman & Nusrat Jahan Tarin & Mohammad Jobayer Hossain, 2022. "Spatial variability of climatic hazards in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2329-2351, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:80:y:2016:i:1:p:23-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.