IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v79y2015i3p2181-2187.html
   My bibliography  Save this article

Avalanche in Tuban: a hazard with no defense

Author

Listed:
  • Xiang-Zhou Xu
  • Guo-Dong Song
  • Jie Liu
  • Wei-Qin Dang
  • Hang Gao
  • Zhen-Yi Liu
  • Hong-Wu Zhang

Abstract

Gravity erosion is a widespread geologic hazard in the rural area of the Loess Plateau, China. Recently, an avalanche struck Tuban Town in northwest China. The small-size collapse, which led to seven fatalities, demonstrated the fragile defense capability in the area. Adverse destabilization from human activities, i.e., no protection practice after slope cutting, is the major cause of the incident; unrecorded slight geological activity could make an avalanche imminent. We look forward to alleviating such disasters in the near future with effective, low-cost measures. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Xiang-Zhou Xu & Guo-Dong Song & Jie Liu & Wei-Qin Dang & Hang Gao & Zhen-Yi Liu & Hong-Wu Zhang, 2015. "Avalanche in Tuban: a hazard with no defense," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 2181-2187, December.
  • Handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:2181-2187
    DOI: 10.1007/s11069-015-1946-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1946-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1946-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Budimir & P. Atkinson & H. Lewis, 2014. "Earthquake-and-landslide events are associated with more fatalities than earthquakes alone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 895-914, June.
    2. Zhi-hua Yang & Heng-xing Lan & Xing Gao & Lang-ping Li & Yun-shan Meng & Yu-ming Wu, 2015. "Urgent landslide susceptibility assessment in the 2013 Lushan earthquake-impacted area, Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2467-2487, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyi Shao & Chong Xu & Siyuan Ma, 2022. "Preliminary Analysis of Coseismic Landslides Induced by the 1 June 2022 Ms 6.1 Lushan Earthquake, China," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    2. Shuangyan Guo & Shan Yang & Canjiao Liu, 2024. "Mining Heritage Reuse Risks: A Systematic Review," Sustainability, MDPI, vol. 16(10), pages 1-16, May.
    3. Jiwen An & Xianfu Bai & Jinghai Xu & Gaozhong Nie & Xiuying Wang, 2015. "Prediction of highway blockage caused by earthquake-induced landslides for improving earthquake emergency response," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 511-536, October.
    4. Kai Ke & Yichen Zhang & Jiquan Zhang & Yanan Chen & Chenyang Wu & Zuoquan Nie & Junnan Wu, 2023. "Risk Assessment of Earthquake–Landslide Hazard Chain Based on CF-SVM and Newmark Model—Using Changbai Mountain as an Example," Land, MDPI, vol. 12(3), pages 1-20, March.
    5. Tom R. Robinson, 2020. "Scenario ensemble modelling of possible future earthquake impacts in Bhutan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3457-3478, September.
    6. Wei, Yian & Cheng, Yao & Liao, Haitao, 2024. "Optimal resilience-based restoration of a system subject to recurrent dependent hazards," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Mohamed Marwan Al Heib & Christian Franck & Hippolyte Djizanne & Marie Degas, 2023. "Post-Mining Multi-Hazard Assessment for Sustainable Development," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    8. Yiming Cao & Hengxing Lan & Langping Li, 2023. "Disaster Risk Assessment for Railways: Challenges and a Sustainable Promising Solution Based on BIM+GIS," Sustainability, MDPI, vol. 15(24), pages 1-27, December.
    9. Susu Xu & Joshua Dimasaka & David J. Wald & Hae Young Noh, 2022. "Seismic multi-hazard and impact estimation via causal inference from satellite imagery," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Rohana Tair & Sheyron Eduin, 2018. "Heavy Metals In Water And Sediment From Liwagu River And Mansahaban River At Ranau Sabah," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 2(2), pages 26-32, August.
    11. M. F. Ferrario, 2019. "Landslides triggered by multiple earthquakes: insights from the 2018 Lombok (Indonesia) events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 575-592, September.
    12. S. Elayaraja & S. Chandrasekaran & G. Ganapathy, 2015. "Evaluation of seismic hazard and potential of earthquake-induced landslides of the Nilgiris, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1997-2015, September.
    13. Lina Han & Qing Ma & Feng Zhang & Yichen Zhang & Jiquan Zhang & Yongbin Bao & Jing Zhao, 2019. "Risk Assessment of An Earthquake-Collapse-Landslide Disaster Chain by Bayesian Network and Newmark Models," IJERPH, MDPI, vol. 16(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:79:y:2015:i:3:p:2181-2187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.