IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v78y2015i3p1947-1960.html
   My bibliography  Save this article

Uncertainty analysis for extreme flood events in a semi-arid region

Author

Listed:
  • Majid Mirzaei
  • Yuk Huang
  • Ahmed El-Shafie
  • Tayebeh Chimeh
  • Juneseok Lee
  • Nariman Vaizadeh
  • Jan Adamowski

Abstract

Extreme flood events are complex and inherently uncertain phenomenons. Consequently forecasts of floods are inherently uncertain in nature due to various sources of uncertainty including model uncertainty, input uncertainty, and parameter uncertainty. This paper investigates two types of natural and model uncertainties in extreme rainfall–runoff events in a semi-arid region. Natural uncertainty is incorporated in the distribution function of the series of annual maximum daily rainfall, and model uncertainty is an epistemic uncertainty source. The kinematic runoff and erosion model was used for rainfall–runoff simulation. The model calibration scheme is carried out under the generalized likelihood uncertainty estimation framework to quantify uncertainty in the rainfall–runoff modeling process. Uncertainties of the rainfall depths—associated with depth duration frequency curves—were estimated with the bootstrap sampling method and described by a normal probability density function. These uncertainties are presented in the rainfall–runoff modeling for investigation of uncertainty effects on extreme hydrological events discharge and can be embedded into guidelines for risk-based design and management of urban water infrastructure. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Majid Mirzaei & Yuk Huang & Ahmed El-Shafie & Tayebeh Chimeh & Juneseok Lee & Nariman Vaizadeh & Jan Adamowski, 2015. "Uncertainty analysis for extreme flood events in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1947-1960, September.
  • Handle: RePEc:spr:nathaz:v:78:y:2015:i:3:p:1947-1960
    DOI: 10.1007/s11069-015-1812-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1812-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1812-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Callies, U. & Scharfe, M. & Ratto, M., 2008. "Calibration and uncertainty analysis of a simple model of silica-limited diatom growth in the Elbe River," Ecological Modelling, Elsevier, vol. 213(2), pages 229-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enliang Guo & Jiquan Zhang & Yongfang Wang & Ha Si & Feng Zhang, 2016. "Dynamic risk assessment of waterlogging disaster for maize based on CERES-Maize model in Midwest of Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1747-1761, September.
    2. Jianxia Chang & Hongxue Zhang & Yimin Wang & Lianpeng Zhang, 2017. "Impact of climate change on runoff and uncertainty analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1113-1131, September.
    3. Alireza Keshavarzi & Hossein Hamidifar, 2018. "Kinetic energy and momentum correction coefficients in compound open channels," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1859-1869, July.
    4. Majid Mirzaei & Haoxuan Yu & Adnan Dehghani & Hadi Galavi & Vahid Shokri & Sahar Mohsenzadeh Karimi & Mehdi Sookhak, 2021. "A Novel Stacked Long Short-Term Memory Approach of Deep Learning for Streamflow Simulation," Sustainability, MDPI, vol. 13(23), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scharfe, Mirco & Callies, Ulrich & Blöcker, Gerd & Petersen, Wilhelm & Schroeder, Friedhelm, 2009. "A simple Lagrangian model to simulate temporal variability of algae in the Elbe River," Ecological Modelling, Elsevier, vol. 220(18), pages 2173-2186.
    2. Turley, Marianne C. & Ford, E. David, 2009. "Definition and calculation of uncertainty in ecological process models," Ecological Modelling, Elsevier, vol. 220(17), pages 1968-1983.
    3. Zhao, Xiaodong & Zhang, Hongjian & Tao, Xiaolei, 2013. "Predicting the short-time-scale variability of chlorophyll a in the Elbe River using a Lagrangian-based multi-criterion analog model," Ecological Modelling, Elsevier, vol. 250(C), pages 279-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:78:y:2015:i:3:p:1947-1960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.