IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i3p2089-2107.html
   My bibliography  Save this article

Assessment of rainfall-induced shallow landslides in Phetchabun and Krabi provinces, Thailand

Author

Listed:
  • Keisuke Ono
  • So Kazama
  • Chaiwat Ekkawatpanit

Abstract

Shallow landslides are a common type of rainfall-induced landslide, and various methods are currently used to predict their occurrence on a regional scale. Physically based models, such as the shallow landslide instability prediction (SLIP) model, have many advantages because these models can assess the hazards of shallow landslides dynamically, based on physical stability equations that consider rainfall as a triggering factor. The main objective of this research is to test the SLIP model’s potential to predict shallow landslide hazards in Thailand. To achieve this goal, the SLIP model was applied to two massive landslide events in Thailand. The results predicted by the SLIP model for the two study areas are outlined, and the model prediction capabilities were evaluated using the receiver operating characteristic plot. The Phetchabun results showed that the western part of the catchment had the lowest factor of safety (F S ) value, whereas the Krabi results showed that the slopes surrounding the peak of Khao Panom Mountain had the lowest F S value, explaining the highest potentials for shallow landslides in each area. The SLIP model showed good performance: The global accuracies were 0.828 for the Phetchabun area and 0.824 for the Krabi area. The SLIP model predicted the daily time-varying percentage of unstable areas over the analyzed periods. The SLIP model simulated a negligible percentage of unstable areas over all considered periods, except for expected dates, suggesting that the prediction capability is reasonably accurate. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Keisuke Ono & So Kazama & Chaiwat Ekkawatpanit, 2014. "Assessment of rainfall-induced shallow landslides in Phetchabun and Krabi provinces, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 2089-2107, December.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:3:p:2089-2107
    DOI: 10.1007/s11069-014-1292-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1292-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1292-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dieu Bui & Owe Lofman & Inge Revhaug & Oystein Dick, 2011. "Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1413-1444, December.
    2. Martin Bednarik & Işık Yilmaz & Marian Marschalko, 2012. "Landslide hazard and risk assessment: a case study from the Hlohovec–Sered’ landslide area in south-west Slovakia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 547-575, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    3. Cuiying Zhou & Jinwu Ouyang & Zhen Liu & Lihai Zhang, 2022. "Early Risk Warning of Highway Soft Rock Slope Group Using Fuzzy-Based Machine Learning," Sustainability, MDPI, vol. 14(6), pages 1-28, March.
    4. Zohre Hoseinzade & Asal Zavarei & Kourosh Shirani, 2021. "Application of prediction–area plot in the assessment of MCDM methods through VIKOR, PROMETHEE II, and permutation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2489-2507, December.
    5. Xiaoqing Zhao & Junwei Pu & Xingyou Wang & Junxu Chen & Liang Emlyn Yang & Zexian Gu, 2018. "Land-Use Spatio-Temporal Change and Its Driving Factors in an Artificial Forest Area in Southwest China," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    6. Kamila Pawluszek & Andrzej Borkowski, 2017. "Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 919-952, March.
    7. Michele Marconi & Beatrice Gatto & Michele Magni & Fausto Marincioni, 2016. "A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 329-346, March.
    8. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    9. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    10. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    11. Nussaïbah B. Raja & Ihsan Çiçek & Necla Türkoğlu & Olgu Aydin & Akiyuki Kawasaki, 2017. "Landslide susceptibility mapping of the Sera River Basin using logistic regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1323-1346, February.
    12. Kamila Hodasová & Martin Bednarik, 2021. "Effect of using various weighting methods in a process of landslide susceptibility assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 481-499, January.
    13. Moung-Jin Lee & Wonkyong Song & Saro Lee, 2015. "Habitat Mapping of the Leopard Cat ( Prionailurus bengalensis ) in South Korea Using GIS," Sustainability, MDPI, vol. 7(4), pages 1-21, April.
    14. L. Lombardo & M. Cama & C. Conoscenti & M. Märker & E. Rotigliano, 2015. "Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: application to the 2009 storm event in Messi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1621-1648, December.
    15. Chen Cao & Jianping Chen & Wen Zhang & Peihua Xu & Lianjing Zheng & Chun Zhu, 2019. "Geospatial Analysis of Mass-Wasting Susceptibility of Four Small Catchments in Mountainous Area of Miyun County, Beijing," IJERPH, MDPI, vol. 16(15), pages 1-19, August.
    16. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    17. Juraj Holec & Martin Bednarik & Marián Šabo & Jozef Minár & Isik Yilmaz & Marián Marschalko, 2013. "A small-scale landslide susceptibility assessment for the territory of Western Carpathians," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 1081-1107, October.
    18. Mohamad Ghozali Hassan* & Che AzlanTaib & Muslim Akanmu & Afif Ahmarofi, 2018. "A Theoretical Review on the Preventive Measures to Landslide Disaster Occurrences in Penang State, Malaysia," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 753-759:6.
    19. Ahmed Cemiloglu & Licai Zhu & Agab Bakheet Mohammednour & Mohammad Azarafza & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm," Land, MDPI, vol. 12(7), pages 1-20, July.
    20. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:3:p:2089-2107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.