IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9792-d1174615.html
   My bibliography  Save this article

Spatial Distribution of Water Risk Based on Atlas Compilation in the Shaanxi Section of the Qinling Mountains, China

Author

Listed:
  • Xinyue Ke

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Ni Wang

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Long Yu

    (Hanjiang-to-Weihe River Valley Water Diversion Project Construction Co., Ltd., Shaanxi Province, Xi’an 710024, China)

  • Zihan Guo

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Tianming He

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

Abstract

Global climate change and rapid socio-economic development have increased the uncertainty in water resource systems and the complexity of water risk issues. Analyzing water risk and its spatial distribution is integral to the attainment of Sustainable Development Goal (SDG) 6, as this contributes to effective water resource partition management. In this paper, a compiling method of risk atlas with multiple layers is proposed, and the water risk system is divided into five sub-systems including the risk of resource, management, engineering, quality, and disaster. The information used for the risk atlas is calculated by a risk evaluation model based on a Pressure–State–Response (PSR) framework, hierarchical cluster, and set pair analysis (SPA). Risks in the Qinling Mountains of Shaanxi (as a case study) are evaluated and visualized. The results show that grades IV and V of engineering, disaster, and resource risk exceed 40%, indicating that they require prior control. The quality and management risks are not major, but there is still room for improvement. Overall, the risk atlas can effectively and objectively reflect the spatial distribution of water risk and provide a basis for the layout of water risk control measures.

Suggested Citation

  • Xinyue Ke & Ni Wang & Long Yu & Zihan Guo & Tianming He, 2023. "Spatial Distribution of Water Risk Based on Atlas Compilation in the Shaanxi Section of the Qinling Mountains, China," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9792-:d:1174615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longxia Qian & Hongrui Wang & Keni Zhang, 2014. "Evaluation Criteria and Model for Risk Between Water Supply and Water Demand and its Application in Beijing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4433-4447, October.
    2. Wei Wang & Chenhong Xia & Chaofeng Liu & Ziyi Wang, 2020. "Study of double combination evaluation of urban comprehensive disaster risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1181-1209, November.
    3. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    4. Menghua Deng & Junfei Chen & Jing Huang & Wenjuan Niu, 2018. "Agricultural Drought Risk Evaluation Based on an Optimized Comprehensive Index System," Sustainability, MDPI, vol. 10(10), pages 1-22, September.
    5. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    6. Martin Bednarik & Işık Yilmaz & Marian Marschalko, 2012. "Landslide hazard and risk assessment: a case study from the Hlohovec–Sered’ landslide area in south-west Slovakia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 547-575, October.
    7. Wenyong Wu & Shiyang Yin & Honglu Liu & Honghan Chen, 2014. "Groundwater Vulnerability Assessment and Feasibility Mapping Under Reclaimed Water Irrigation by a Modified DRASTIC Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1219-1234, March.
    8. Romulus Costache, 2019. "Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models - A Useful Tool for Flood Risk Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3239-3256, July.
    9. Ju-Liang Jin & Yi-Ming Wei & Le-Le Zou & Li Liu & Wei-wei Zhang & Yu-liang Zhou, 2012. "Forewarning of sustainable utilization of regional water resources: a model based on BP neural network and set pair analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(1), pages 115-127, May.
    10. Qiang Fu & Fanli Gong & Qiuxiang Jiang & Tianxiao Li & Kun Cheng & He Dong & Xiaosong Ma, 2014. "Risk assessment of the city water resources system based on Pansystems Observation-Control Model of Periphery," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1899-1912, April.
    11. Yanfen Geng & Xin Zheng & Zhili Wang & Zhaowei Wang, 2020. "Flood risk assessment in Quzhou City (China) using a coupled hydrodynamic model and fuzzy comprehensive evaluation (FCE)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(1), pages 133-149, January.
    12. Volker Meyer & Sebastian Scheuer & Dagmar Haase, 2009. "A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(1), pages 17-39, January.
    13. Zhou, Xinyao & Zhang, Yongqiang & Sheng, Zhuping & Manevski, Kiril & Andersen, Mathias N. & Han, Shumin & Li, Huilong & Yang, Yonghui, 2021. "Did water-saving irrigation protect water resources over the past 40 years? A global analysis based on water accounting framework," Agricultural Water Management, Elsevier, vol. 249(C).
    14. Yumeng Zhang & Jing Li & Zixiang Zhou, 2019. "Exploring Expedient Protected Area for Ecosystem Services: Decision-Making Method with a New Algorithm," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    15. Gu, Donglin & Guo, Jiahang & Fan, Yurui & Zuo, Qiting & Yu, Lei, 2022. "Evaluating water-energy-food system of Yellow River basin based on type-2 fuzzy sets and Pressure-State-Response model," Agricultural Water Management, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Tao & Liu, Dong & Deng, Mingjiang, 2022. "Multi-scale ecological operation model of reservoir group coupled with ecological infiltration irrigation," Agricultural Water Management, Elsevier, vol. 270(C).
    2. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    3. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    4. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    6. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.
    7. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    8. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    9. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    10. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    11. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    12. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    13. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    14. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    15. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    16. Hassan Tolba Aboelnga & Lars Ribbe & Franz-Bernd Frechen & Jamal Saghir, 2019. "Urban Water Security: Definition and Assessment Framework," Resources, MDPI, vol. 8(4), pages 1-19, November.
    17. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.
    18. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    19. Juliana Marcal & Blanca Antizar-Ladislao & Jan Hofman, 2021. "Addressing Water Security: An Overview," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    20. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9792-:d:1174615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.