IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v71y2014i1p767-784.html
   My bibliography  Save this article

Flood forecasting in large rivers with data-driven models

Author

Listed:
  • Phuoc Nguyen
  • Lloyd Chua
  • Lam Son

Abstract

Results from the application of adaptive neuro-fuzzy inference system (ANFIS) to forecast water levels at 3 stations along the mainstream of the Lower Mekong River are reported in this paper. The study investigated the effects of including water levels from upstream stations and tributaries, and rainfall as inputs to ANFIS models developed for the 3 stations. When upstream water levels in the mainstream were used as input, improvements to forecasts were realized only when the water levels from 1 or at most 2 upstream stations were included. This is because when there are significant contributions of flow from the tributaries, the correlation between the water levels in the upstream stations and stations of interest decreases, limiting the effectiveness of including water levels from upstream stations as inputs. In addition, only improvements at short lead times were achieved. Including the water level from the tributaries did not significantly improve forecast results. This is attributed mainly to the fact that the flow contributions represented by the tributaries may not be significant enough, given that there could be large volume of flow discharging directly from the catchments which are ungauged, into the mainstream. The largest improvement for 1-day forecasts was obtained for Kratie station where lateral flow contribution was 17 %, the highest for the 3 stations considered. The inclusion of rainfall as input resulted in significant improvements to long-term forecasts. For Thakhek, where rainfall is most significant, the persistence index and coefficient of efficiency for 5-lead-day forecasts improved from 0.17 to 0.44 and 0.89 to 0.93, respectively, whereas the root mean square error decreased from 0.83 to 0.69 m. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Phuoc Nguyen & Lloyd Chua & Lam Son, 2014. "Flood forecasting in large rivers with data-driven models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 767-784, March.
  • Handle: RePEc:spr:nathaz:v:71:y:2014:i:1:p:767-784
    DOI: 10.1007/s11069-013-0920-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0920-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0920-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benedetto Calvo & Fabrizio Savi, 2009. "Real-time flood forecasting of the Tiber river in Rome," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 461-477, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marzieh Khajehali & Hamid R. Safavi & Mohammad Reza Nikoo & Mahmood Fooladi, 2024. "A fusion-based framework for daily flood forecasting in multiple-step-ahead and near-future under climate change scenarios: a case study of the Kan River, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8483-8504, July.
    2. Yixiang Sun & Deshan Tang & Yifei Sun & Qingfeng Cui, 2016. "Comparison of a fuzzy control and the data-driven model for flood forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 827-844, June.
    3. Hassan Sharafi & Isa Ebtehaj & Hossein Bonakdari & Amir Hossein Zaji, 2016. "Design of a support vector machine with different kernel functions to predict scour depth around bridge piers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2145-2162, December.
    4. Mandeep Kaur & Pankaj Deep Kaur & Sandeep Kumar Sood, 2021. "Energy efficient IoT-based cloud framework for early flood prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2053-2076, December.
    5. Yaroslav Vyklyuk & Milan Radovanović & Boško Milovanović & Taras Leko & Milan Milenković & Zoran Milošević & Ana Milanović Pešić & Dejana Jakovljević, 2017. "Hurricane genesis modelling based on the relationship between solar activity and hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1043-1062, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Cheng Liu & Chung-Yi Wu, 2011. "Flash flood routing modeling for levee-breaks and overbank flows due to typhoon events in a complicated river system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1057-1076, September.
    2. Zhangjun Liu & Shenglian Guo & Honggang Zhang & Dedi Liu & Guang Yang, 2016. "Comparative Study of Three Updating Procedures for Real-Time Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2111-2126, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:71:y:2014:i:1:p:767-784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.