IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v84y2016i3d10.1007_s11069-016-2540-5.html
   My bibliography  Save this article

Design of a support vector machine with different kernel functions to predict scour depth around bridge piers

Author

Listed:
  • Hassan Sharafi

    (Razi University)

  • Isa Ebtehaj

    (Razi University)

  • Hossein Bonakdari

    (Razi University)

  • Amir Hossein Zaji

    (Razi University)

Abstract

Scour depth is a vital subject in bridge pier design. The exact estimation of scour depth can prevent damage caused by bridge failure and facilitate optimal bridge pier design. In this article, the support vector machine (SVM) method is applied to predict scour depth around bridge piers. The SVM technique is developed using six kernel functions, including polynomial, sigmoid, exponential, Gaussian, Laplacian and rational quadratic. Scour depth is modeled as a function of three dimensionless variables, namely geometric characteristics, flow and bed materials. The performance of SVM (in training and testing) is evaluated using dimensionless variables gathered from a wide range of field datasets. The SVM designed using the polynomial kernel function produced the most accurate results compared with the other kernel functions (RMSE = 0.078, MRE = −0.181, MARE = 0.332, MSRE = 0.025). Sensitivity analysis is performed to identify the effect of each dimensionless parameter on predicting scour depth around bridge piers. The testing results of SVM-polynomial are compared with that of the artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS) and nonlinear regression-based methods presented in this study and in the literature. Evidently, SVM-polynomial predicted scour depth with higher accuracy and lower error than when using ANN, ANFIS and nonlinear regression-based equations. Moreover, as an alternative method, a simple program is presented by the SVM-polynomial to calculate scour depth around bridge piers.

Suggested Citation

  • Hassan Sharafi & Isa Ebtehaj & Hossein Bonakdari & Amir Hossein Zaji, 2016. "Design of a support vector machine with different kernel functions to predict scour depth around bridge piers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2145-2162, December.
  • Handle: RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2540-5
    DOI: 10.1007/s11069-016-2540-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2540-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2540-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Kamatchi & K. Balaji Rao & Nagesh Iyer & S. Arunachalam, 2012. "Neural network-based methodology for inter-arrival times of earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1291-1303, November.
    2. Yixiang Sun & Deshan Tang & Yifei Sun & Qingfeng Cui, 2016. "Comparison of a fuzzy control and the data-driven model for flood forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 827-844, June.
    3. Reza Mohammadpour & Aminuddin Ghani & Mohammadtaghi Vakili & Tooraj Sabzevari, 2016. "Prediction of temporal scour hazard at bridge abutment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1891-1911, February.
    4. Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.
    5. Phuoc Nguyen & Lloyd Chua & Lam Son, 2014. "Flood forecasting in large rivers with data-driven models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 767-784, March.
    6. Reza Mohammadpour & Aminuddin Ab. Ghani & Mohammadtaghi Vakili & Tooraj Sabzevari, 2016. "Prediction of temporal scour hazard at bridge abutment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1891-1911, February.
    7. Sung You & Jang-Won Seo, 2009. "Storm surge prediction using an artificial neural network model and cluster analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 97-114, October.
    8. Mohammad Najafzadeh & Ahmed Sattar, 2015. "Neuro-Fuzzy GMDH Approach to Predict Longitudinal Dispersion in Water Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2205-2219, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Grégoire & Josée Fortin & Isa Ebtehaj & Hossein Bonakdari, 2022. "Novel Hybrid Statistical Learning Framework Coupled with Random Forest and Grasshopper Optimization Algorithm to Forecast Pesticide Use on Golf Courses," Agriculture, MDPI, vol. 12(7), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manish Pandey & Masoud Karbasi & Mehdi Jamei & Anurag Malik & Jaan H. Pu, 2023. "A Comprehensive Experimental and Computational Investigation on Estimation of Scour Depth at Bridge Abutment: Emerging Ensemble Intelligent Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3745-3767, July.
    2. Junli Xu & Yuhong Zhang & Xianqing Lv & Qiang Liu, 2019. "Inversion of Wind-Stress Drag Coefficient in Simulating Storm Surges by Means of Regularization Technique," IJERPH, MDPI, vol. 16(19), pages 1-16, September.
    3. Tarate Suryakant Bajirao & Pravendra Kumar & Manish Kumar & Ahmed Elbeltagi & Alban Kuriqi, 2021. "Superiority of Hybrid Soft Computing Models in Daily Suspended Sediment Estimation in Highly Dynamic Rivers," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    4. Jamil Amanollahi & Shahram Kaboodvandpour & Hiva Majidi, 2017. "Evaluating the accuracy of ANN and LR models to estimate the water quality in Zarivar International Wetland, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1511-1527, February.
    5. Yixiang Sun & Deshan Tang & Yifei Sun & Qingfeng Cui, 2016. "Comparison of a fuzzy control and the data-driven model for flood forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 827-844, June.
    6. Yaroslav Vyklyuk & Milan Radovanović & Boško Milovanović & Taras Leko & Milan Milenković & Zoran Milošević & Ana Milanović Pešić & Dejana Jakovljević, 2017. "Hurricane genesis modelling based on the relationship between solar activity and hurricanes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1043-1062, January.
    7. Ruhhee Tabbussum & Abdul Qayoom Dar, 2021. "Modelling hybrid and backpropagation adaptive neuro-fuzzy inference systems for flood forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 519-566, August.
    8. Amir Hamzeh Haghiabi, 2017. "Modeling River Mixing Mechanism Using Data Driven Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 811-824, February.
    9. Satish Kumar & Arpan Pradhan & Jnana Ranjan Khuntia & Kishanjit Kumar Khatua, 2023. "Evaluation of Flow Resistance using Multi-Gene Genetic Programming for Bed-load Transport in Gravel-bed Channels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2945-2967, June.
    10. Ozgur Kisi & Mohammad Zounemat-Kermani, 2016. "Suspended Sediment Modeling Using Neuro-Fuzzy Embedded Fuzzy c-Means Clustering Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3979-3994, September.
    11. Ashish Kumar & Pravendra Kumar & Vijay Kumar Singh, 2019. "Evaluating Different Machine Learning Models for Runoff and Suspended Sediment Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1217-1231, February.
    12. Marzieh Khajehali & Hamid R. Safavi & Mohammad Reza Nikoo & Mahmood Fooladi, 2024. "A fusion-based framework for daily flood forecasting in multiple-step-ahead and near-future under climate change scenarios: a case study of the Kan River, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8483-8504, July.
    13. Mandeep Kaur & Pankaj Deep Kaur & Sandeep Kumar Sood, 2021. "Energy efficient IoT-based cloud framework for early flood prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2053-2076, December.
    14. Ahmed Sattar & B. Gharabaghi & Edward McBean, 2016. "Prediction of Timing of Watermain Failure Using Gene Expression Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1635-1651, March.
    15. Meral Buyukyildiz & Serife Yurdagul Kumcu, 2017. "An Estimation of the Suspended Sediment Load Using Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial Neural Network Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1343-1359, March.
    16. T. R. Rosin & M. Romano & E. Keedwell & Z. Kapelan, 2021. "A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1273-1289, March.
    17. Mostafa Mardani Najafabadi & Abbas Mirzaei & Hassan Azarm & Siamak Nikmehr, 2022. "Managing Water Supply and Demand to Achieve Economic and Environmental Objectives: Application of Mathematical Programming and ANFIS Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3007-3027, July.
    18. Hamid Moeeni & Hossein Bonakdari & Isa Ebtehaj, 2017. "Integrated SARIMA with Neuro-Fuzzy Systems and Neural Networks for Monthly Inflow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2141-2156, May.
    19. Jonathan Fabián Dato & Matías Gabriel Dinápoli & Enrique Eduardo D’Onofrio & Claudia Gloria Simionato, 2024. "On water level forecasting using artificial neural networks: the case of the Río de la Plata Estuary, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 9753-9776, September.
    20. Zaher Mundher Yaseen & Mazen Ismaeel Ghareb & Isa Ebtehaj & Hossein Bonakdari & Ridwan Siddique & Salim Heddam & Ali A. Yusif & Ravinesh Deo, 2018. "Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 105-122, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:84:y:2016:i:3:d:10.1007_s11069-016-2540-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.