IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v58y2011i3p1057-1076.html
   My bibliography  Save this article

Flash flood routing modeling for levee-breaks and overbank flows due to typhoon events in a complicated river system

Author

Listed:
  • Wen-Cheng Liu
  • Chung-Yi Wu

Abstract

There has been a yearly increase in precipitation in Taiwan, consistent with trends seen across the world. In the summer and fall, typhoons or tropical cyclones with torrential rainfall frequently occur as a result of Taiwan’s subtropical climate. Flash floods may cause a levee-break and/or the overtopping of banks at narrow neck locations in a river system, which may in turn produce inundation in urban areas. Therefore, a model that predicts flash floods is of vital importance for river management. The present study is based on a flash flood routing model, which incorporates levee-break and overbank functions to calculate the discharge hydrographs in the complicated Danshuei River system of northern Taiwan. The numerical model was calibrated and verified against observed water stages using three typhoon events. The results indicate reasonable agreement between the model simulations and the observed data. The model was then used to calculate the levee-break and overbank flow hydrographs due to Typhoon Talim (2005) and Typhoon Nari (2001), respectively. The simulated results indicate that several parameters significantly affect the flow hydrograph during a levee-break and should be carefully monitored when levee-break events occur in the river system. The simulated water stages at several stations are consistent with observed data from Typhoon Nari. The simulated overbank flow results quantitatively agree with reported information. The data also confirm that most of the overbank events occurred at the upper reaches of the Keelung River, consistent with the low levee height protection. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Wen-Cheng Liu & Chung-Yi Wu, 2011. "Flash flood routing modeling for levee-breaks and overbank flows due to typhoon events in a complicated river system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1057-1076, September.
  • Handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:1057-1076
    DOI: 10.1007/s11069-010-9711-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9711-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9711-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benedetto Calvo & Fabrizio Savi, 2009. "Real-time flood forecasting of the Tiber river in Rome," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 461-477, September.
    2. Lung-Sheng Hsieh & Ming-Hsi Hsu & Ming-Hsu Li, 2006. "An Assessment of Structural Measures for Flood-prone Lowlands with High Population Density along the Keelung River in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 37(1), pages 133-152, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierfranco Costabile & Francesco Macchione & Luigi Natale & Gabriella Petaccia, 2015. "Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 181-204, May.
    2. Yi Zou & Shifan Qiu & Yaoqiu Kuang & Ningsheng Huang, 2013. "Analysis of a major storm over the Dongjiang reservoir basin associated with Typhoon Bilis (2006)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 201-218, October.
    3. Anh Ngoc Thi Do, 2024. "Utilizing a fusion of remote sensing data and machine learning models to forecast flood risks to agriculture in Hanoi City, Vietnam," Letters in Spatial and Resource Sciences, Springer, vol. 17(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsung-Yi Pan & Lung-Yao Chang & Jihn-Sung Lai & Hsiang-Kuan Chang & Cheng-Shang Lee & Yih-Chi Tan, 2014. "Coupling typhoon rainfall forecasting with overland-flow modeling for early warning of inundation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1763-1793, February.
    2. Cheol-Hee Son & Jong-In Baek & Yong-Un Ban & Sung-Ryong Ha, 2015. "The Effects of Mitigation Measures on Flood Damage Prevention in Korea," Sustainability, MDPI, vol. 7(12), pages 1-19, December.
    3. Chen Cao & Peihua Xu & Yihong Wang & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas," Sustainability, MDPI, vol. 8(9), pages 1-18, September.
    4. Nanda Khoirunisa & Cheng-Yu Ku & Chih-Yu Liu, 2021. "A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    5. Qiang Zhang & Wei Zhang & Yongqin Chen & Tao Jiang, 2011. "Flood, drought and typhoon disasters during the last half-century in the Guangdong province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 267-278, May.
    6. Phuoc Nguyen & Lloyd Chua & Lam Son, 2014. "Flood forecasting in large rivers with data-driven models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 767-784, March.
    7. Shang-Shu Shih & Sheng-Chi Yang & Huei-Tau Ouyang, 2014. "Anthropogenic effects and climate change threats on the flood diversion of Erchung Floodway in Tanshui River, northern Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1733-1747, September.
    8. Yu-Shou Su, 2016. "Urban Flood Resilience in New York City, London, Randstad, Tokyo, Shanghai, and Taipei," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 6(1), pages 92-108, March.
    9. Zhangjun Liu & Shenglian Guo & Honggang Zhang & Dedi Liu & Guang Yang, 2016. "Comparative Study of Three Updating Procedures for Real-Time Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2111-2126, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:1057-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.