IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v70y2014i1p119-133.html
   My bibliography  Save this article

Intra-annual distribution and decadal change in extreme hydrological events in Xinjiang, Northwestern China

Author

Listed:
  • Guili Sun
  • Yaning Chen
  • Weihong Li
  • Cunde Pan
  • Jiang Li
  • Yuhui Yang

Abstract

We examined intra-annual characteristics and decadal change of extreme hydrological events occurring from 1901 to 2010 in Xinjiang, China, using concentration degree, concentration index, and Mann–Kendall tests. The results indicated that the concentration index in Xinjiang reached a maximum in summer for all areas, demonstrating that extreme hydrological events occurred mainly during summer (although Altay also showed a high winter concentration index). Intra-annual distribution was most concentrated in Turpan and Urumqi, followed by Kuytun–Shihezi and Aksu, with the concentration degree smallest in Altay. The frequency of extreme hydrological events exhibited an obvious increasing trend from 1901 to 2010, particularly post 1970s. Based on the results obtained in this study, the frequency, magnitude, and intensity of extreme hydrological events are expected to increase over time. In addition, the concentration degree and concentration index used to analyze intra-annual distribution of extreme hydrological events were proven to be reliable and will be useful for future studies. Copyright Springer Science+Business Media B.V. 2014

Suggested Citation

  • Guili Sun & Yaning Chen & Weihong Li & Cunde Pan & Jiang Li & Yuhui Yang, 2014. "Intra-annual distribution and decadal change in extreme hydrological events in Xinjiang, Northwestern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 119-133, January.
  • Handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:119-133
    DOI: 10.1007/s11069-012-0242-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0242-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0242-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Z. Xu & Y. Chen & J. Li, 2004. "Impact of Climate Change on Water Resources in the Tarim River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 439-458, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    2. Ziyan Zheng & Zhuguo Ma & Mingxing Li & Jiangjiang Xia, 2017. "Regional water budgets and hydroclimatic trend variations in Xinjiang from 1951 to 2000," Climatic Change, Springer, vol. 144(3), pages 447-460, October.
    3. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    4. Xianghu Li & Qi Zhang & Chong-Yu Xu & Xuchun Ye, 2015. "The changing patterns of floods in Poyang Lake, China: characteristics and explanations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 651-666, March.
    5. Guangju Zhao & Georg Hörmann & Nicola Fohrer & Zengxin Zhang & Jianqing Zhai, 2010. "Streamflow Trends and Climate Variability Impacts in Poyang Lake Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 689-706, March.
    6. Guili Sun & Yaning Chen & Weihong Li & Cunde Pan & Jiang Li & Yuhui Yang, 2013. "Spatial distribution of the extreme hydrological events in Xinjiang, north-west of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 483-495, June.
    7. Lihua Xiong & Tao Du & Chong-Yu Xu & Shenglian Guo & Cong Jiang & Christopher Gippel, 2015. "Non-Stationary Annual Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider Non-Stationarity in the Annual Daily Flow Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3615-3633, August.
    8. Qin, Nianxiu & Lu, Qinqin & Fu, Guobin & Wang, Junneng & Fei, Kai & Gao, Liang, 2023. "Assessing the drought impact on sugarcane yield based on crop water requirements and standardized precipitation evapotranspiration index," Agricultural Water Management, Elsevier, vol. 275(C).
    9. Qi Liu & Yi Liu & Jie Niu & Dongwei Gui & Bill X. Hu, 2022. "Prediction of the Irrigation Area Carrying Capacity in the Tarim River Basin under Climate Change," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    10. Zdeněk Kliment & Milada Matoušková, 2009. "Runoff Changes in the Šumava Mountains (Black Forest) and the Foothill Regions: Extent of Influence by Human Impact and Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1813-1834, July.
    11. Amir AghaKouchak & Nasrin Nasrollahi, 2010. "Semi-parametric and Parametric Inference of Extreme Value Models for Rainfall Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1229-1249, April.
    12. Jingping Zuo & Jianhua Xu & Weihong Li & Dongyang Yang, 2019. "Understanding shallow soil moisture variation in the data-scarce area and its relationship with climate change by GLDAS data," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-17, May.
    13. Yang Yang & Shiwei Liu & Cunde Xiao & Cuiyang Feng & Chenyu Li, 2021. "Evaluating Cryospheric Water Withdrawal and Virtual Water Flows in Tarim River Basin of China: An Input–Output Analysis," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    14. Dong Liu & Tao Bai & Mingjiang Deng & Jia Xu & Xiaoting Wei, 2024. "Multi-Objective Ecological Operation of Large-Scale Reservoir-Gate System Coupled with Vegetation Priority Irrigation in Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5097-5122, October.
    15. Hongbo Ling & Hailiang Xu & Jinyi Fu, 2013. "Temporal and Spatial Variation in Regional Climate and its Impact on Runoff in Xinjiang, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 381-399, January.
    16. Noelia Guaita García & Julia Martínez Fernández & Carl Fitz, 2020. "Environmental Scenario Analysis on Natural and Social-Ecological Systems: A Review of Methods, Approaches and Applications," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    17. Qinqin Zhang & Fang Gu & Sicong Zhang & Xuehua Chen & Xue Ding & Zhonglin Xu, 2024. "Spatiotemporal Variation in Wind Erosion in Tarim River Basin from 2010 to 2018," Land, MDPI, vol. 13(3), pages 1-14, March.
    18. Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.
    19. Hai-Long Liu & An-Ming Bao & Xiang-Liang Pan & Xi Chen, 2013. "Effect of Land-Use Change and Artificial Recharge on the Groundwater in an Arid Inland River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3775-3790, August.
    20. Slobodan P. Simonovic, 2017. "Bringing Future Climatic Change into Water Resources Management Practice Today," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2933-2950, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:70:y:2014:i:1:p:119-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.