IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v69y2013i1p219-235.html
   My bibliography  Save this article

Dynamic behavior of railway embankment slope subjected to seismic excitation

Author

Listed:
  • Yu-liang Lin
  • Guo-lin Yang

Abstract

To reveal the dynamic behavior of a railway embankment slope subjected to seismic excitation, a shaking table model test was performed on a 1:8 scale embankment slope. Different types of seismic wave of differing amplitudes were applied to study the dynamic behavior of the embankment slope, and white noise excitations were interspersed among the seismic waves to observe the changes of dynamic characteristics of the embankment slope. Residual deformation behaviors of the embankment slope were also investigated. The results of the tests show that the natural frequency of the embankment slope exhibits a decreasing trend and that the damping ratio exhibits an increasing trend. The embankment slope exhibits a significant amplification effect on the input acceleration, and the acceleration response differs greatly when subjected to different seismic excitations of differing spectrum characteristics. The filler of the embankment slope affects the changes of the spectrum characteristics of the seismic wave. The filler performs a filtering effect on high-frequency seismic waves and amplifies the energy of low-frequency seismic waves, especially when the frequency is close to the natural frequency of the embankment slope. A bidirectional excitation creates a greater acceleration response than a unidirectional excitation does. The seismic residual deformation of the embankment slope occurs under the seismic subsidence mode. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Yu-liang Lin & Guo-lin Yang, 2013. "Dynamic behavior of railway embankment slope subjected to seismic excitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 219-235, October.
  • Handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:219-235
    DOI: 10.1007/s11069-013-0701-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0701-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0701-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu Huang & Weijie Zhang & Wuwei Mao & Chen Jin, 2011. "Flow analysis of liquefied soils based on smoothed particle hydrodynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1547-1560, December.
    2. Yu Huang & Ximiao Jiang, 2010. "Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 839-850, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-liang Lin & Wu-ming Leng & Guo-lin Yang & Liang Li & Jun-Sheng Yang, 2015. "Seismic response of embankment slopes with different reinforcing measures in shaking table tests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 791-810, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohua Bao & Bin Ye & Guanlin Ye & Feng Zhang, 2016. "Co-seismic and post-seismic behavior of a wall type breakwater on a natural ground composed of liquefiable layer," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1799-1819, September.
    2. Yu Huang & Weijie Zhang & Zili Dai & Qiang Xu, 2013. "Numerical simulation of flow processes in liquefied soils using a soil–water-coupled smoothed particle hydrodynamics method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 809-827, October.
    3. Yu-liang Lin & Wu-ming Leng & Guo-lin Yang & Liang Li & Jun-Sheng Yang, 2015. "Seismic response of embankment slopes with different reinforcing measures in shaking table tests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 791-810, March.
    4. Xiao-Hua Bao & Guan-Lin Ye & Bin Ye, 2014. "Explanation of liquefaction in after shock of the 2011 great east Japan earthquake using numerical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1881-1897, December.
    5. Domenico Lombardi & Subhamoy Bhattacharya, 2014. "Liquefaction of soil in the Emilia-Romagna region after the 2012 Northern Italy earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1749-1770, September.
    6. Yu Huang & Zhuoqiang Wen, 2015. "Recent developments of soil improvement methods for seismic liquefaction mitigation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1927-1938, April.
    7. Yu Huang & Liuyuan Zhao, 2018. "The effects of small particles on soil seismic liquefaction resistance: current findings and future challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 567-579, May.
    8. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    9. Edris Alam & Dale Dominey-Howes, 2014. "An analysis of the AD1762 earthquake and tsunami in SE Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 903-933, January.
    10. Chongqiang Zhu & Yu Huang & Liang-tong Zhan, 2018. "SPH-based simulation of flow process of a landslide at Hongao landfill in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1113-1126, September.
    11. Xuesong Zhang & Biao He & Mohanad Muayad Sabri Sabri & Mohammed Al-Bahrani & Dmitrii Vladimirovich Ulrikh, 2022. "Soil Liquefaction Prediction Based on Bayesian Optimization and Support Vector Machines," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    12. Ye-Shuang Xu & Run-Qiu Huang & Jie Han & Shui-Long Shen, 2013. "Evaluation of allowable withdrawn volume of groundwater based on observed data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 513-522, June.
    13. Yu Huang & Miao Yu, 2013. "Review of soil liquefaction characteristics during major earthquakes of the twenty-first century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2375-2384, February.
    14. Yu Huang & Hu Zheng & Zhijing Zhuang, 2012. "Seismic liquefaction analysis of a reservoir dam foundation in the South–North Water Diversion project in China. Part I: Liquefaction potential assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 1299-1311, February.
    15. Changwei Yang & Jianjing Zhang & Feicheng Liu & Junwei Bi & Zhang Jun, 2015. "Analysis on Two Typical Landslide Hazard Phenomena in The Wenchuan Earthquake by Field Investigations and Shaking Table Tests," IJERPH, MDPI, vol. 12(8), pages 1-18, August.
    16. Fjóla Sigtryggsdóttir & Jónas Snæbjörnsson & Lars Grande & Ragnar Sigbjörnsson, 2015. "Methodology for geohazard assessment for hydropower projects," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1299-1331, November.
    17. Yu Huang & Weijie Zhang & Wuwei Mao & Chen Jin, 2011. "Flow analysis of liquefied soils based on smoothed particle hydrodynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1547-1560, December.
    18. Ye-Shuang Xu & Shui-Long Shen & Yan-Jun Du & Jin-Chun Chai & Suksun Horpibulsuk, 2013. "Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 731-748, March.
    19. Wei Wang & Guangqi Chen & Zheng Han & Suhua Zhou & Hong Zhang & Peideng Jing, 2016. "3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1981-1998, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:69:y:2013:i:1:p:219-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.