IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v58y2011i3p845-852.html
   My bibliography  Save this article

Using disaster footprints, population databases and GIS to overcome persistent problems for human impact assessment in flood events

Author

Listed:
  • Debarati Guha-Sapir
  • Jose Rodriguez-Llanes
  • Thomas Jakubicka

Abstract

Preventing disasters and their consequences is crucial to protect our societies and promote stability. Reliable information on impact is essential for an in-depth analysis of the factors that lead to disaster and for better disaster prevention and preparedness policies. At present, the estimation of the population exposed to natural hazards is based on proxies of their physical footprint such as flooded regions or watersheds. Satellite hazard footprints, combined with population and disaster impact data, can provide an impact assessment of higher precision. We report here on the procedure to combine such data using GIS methods and compare these estimates with those obtained using a previous approach. We found that the process is feasible, although there were limitations in the matching of disaster databases and possible problems of estimation when the data had different resolutions. In half of the events, the watershed approach largely overestimated the population physically exposed to floods. We conclude that the systematic production of footprints, as well as better methodologies for human impact measurement, would improve our understanding of disaster impacts and thereby strengthen disaster preparedness. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Debarati Guha-Sapir & Jose Rodriguez-Llanes & Thomas Jakubicka, 2011. "Using disaster footprints, population databases and GIS to overcome persistent problems for human impact assessment in flood events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 845-852, September.
  • Handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:845-852
    DOI: 10.1007/s11069-011-9775-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9775-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9775-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Stevens & Yan Song & Philip Berke, 2010. "New Urbanist developments in flood-prone areas: safe development, or safe development paradox?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 605-629, June.
    2. Silvia Mosquera-Machado & Maxx Dilley, 2009. "A comparison of selected global disaster risk assessment results," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 439-456, March.
    3. Maxx Dilley & Robert S. Chen & Uwe Deichmann & Arthur L. Lerner-Lam & Margaret Arnold, 2005. "Natural Disaster Hotspots: A Global Risk Analysis," World Bank Publications - Books, The World Bank Group, number 7376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquin Rodriguez-Vidal & Jose Rodriguez-Llanes & Debarati Guha-Sapir, 2012. "Civil nuclear power at risk of tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1273-1278, September.
    2. Henny Rydberg & Gaetano Marrone & Susanne Strömdahl & Johan von Schreeb, 2015. "A Promising Tool to Assess Long Term Public Health Effects of Natural Disasters: Combining Routine Health Survey Data and Geographic Information Systems to Assess Stunting after the 2001 Earthquake in," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    3. Annemarie Müller, 2013. "Flood risks in a dynamic urban agglomeration: a conceptual and methodological assessment framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1931-1950, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baoyin Liu & Yim Siu & Gordon Mitchell & Wei Xu, 2013. "Exceedance probability of multiple natural hazards: risk assessment in China’s Yangtze River Delta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2039-2055, December.
    2. Elizabeth Christenson & Mark Elliott & Ovik Banerjee & Laura Hamrick & Jamie Bartram, 2014. "Climate-Related Hazards: A Method for Global Assessment of Urban and Rural Population Exposure to Cyclones, Droughts, and Floods," IJERPH, MDPI, vol. 11(2), pages 1-24, February.
    3. Dapeng Huang & Renhe Zhang & Zhiguo Huo & Fei Mao & Youhao E & Wei Zheng, 2012. "An assessment of multidimensional flood vulnerability at the provincial scale in China based on the DEA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1575-1586, November.
    4. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    5. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    6. Jolanta Kryspin-Watson & John Pollner & Sonja Nieuwejaar, 2008. "Climate Change Adaptation in Europe and Central Asia," World Bank Publications - Reports 25985, The World Bank Group.
    7. Fatemeh Jalayer & Raffaele Risi & Francesco Paola & Maurizio Giugni & Gaetano Manfredi & Paolo Gasparini & Maria Topa & Nebyou Yonas & Kumelachew Yeshitela & Alemu Nebebe & Gina Cavan & Sarah Lindley , 2014. "Probabilistic GIS-based method for delineation of urban flooding risk hotspots," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 975-1001, September.
    8. Faraz S. Tehrani & Michele Calvello & Zhongqiang Liu & Limin Zhang & Suzanne Lacasse, 2022. "Machine learning and landslide studies: recent advances and applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1197-1245, November.
    9. Nisar Ali Shah & Muhammad Shafique & Muhammad Ishfaq & Kamil Faisal & Mark Van der Meijde, 2023. "Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Thilini Mahanama & Abootaleb Shirvani & Svetlozar Rachev, 2022. "A Natural Disasters Index," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 263-284, April.
    11. Chia-Lee Yang & Benjamin J. C. Yuan & Chi-Yo Huang, 2015. "Key Determinant Derivations for Information Technology Disaster Recovery Site Selection by the Multi-Criterion Decision Making Method," Sustainability, MDPI, vol. 7(5), pages 1-40, May.
    12. Jing Wang & Feng Fang & Qiang Zhang & Jinsong Wang & Yubi Yao & Wei Wang, 2016. "Risk evaluation of agricultural disaster impacts on food production in southern China by probability density method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1605-1634, September.
    13. Kwan Ok Lee & Hyojung Lee, 2022. "Public responses to COVID‐19 case disclosure and their spatial implications," Journal of Regional Science, Wiley Blackwell, vol. 62(3), pages 732-756, June.
    14. Octavio Rojas & María Mardones & Carolina Martínez & Luis Flores & Katia Sáez & Alberto Araneda, 2018. "Flooding in Central Chile: Implications of Tides and Sea Level Increase in the 21st Century," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    15. Zijun Qie & Lili Rong, 2017. "An integrated relative risk assessment model for urban disaster loss in view of disaster system theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 165-190, August.
    16. Abdoulaye Sy & Catherine Araujo-Bonjean & Marie-Eliette Dury & Nourddine Azzaoui & Arnaud Guillin, 2021. "An Extreme Value Mixture model to assess drought hazard in West Africa," Working Papers hal-03297023, HAL.
    17. World Bank, 2020. "Agriculture Risk Financing in Southern Africa," World Bank Publications - Reports 34084, The World Bank Group.
    18. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    19. Badolo, Felix & Kinda, Somlanare Romuald, 2012. "Climatic shocks and food security in developing countries," MPRA Paper 43006, University Library of Munich, Germany.
    20. Pawee Klongvessa & Srilert Chotpantarat, 2022. "Determination of rainfall data for direct runoff prediction in monsoon region: a case study in the Upper Yom basin, Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2193-2218, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:58:y:2011:i:3:p:845-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.