IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v58y2011i1p117-140.html
   My bibliography  Save this article

Risk analysis for flood-control structure under consideration of uncertainties in design flood

Author

Listed:
  • Shiang-Jen Wu
  • Jinn-Chuang Yang
  • Yeou-Koung Tung

Abstract

This study presents a risk analysis model to evaluate the failure risk for the flood-control structures in the Keelung River due to the uncertainties in the hydrological and hydraulic analysis, including hydrologic, hydraulic, and geomorphologic uncertainty factors. This study defines failure risk as the overtopping probability of the maximum water level exceeding the levee crown, and the proposed risk analysis model integrates with the advanced first-order and second-moment (AFOSM) method to calculate the overtopping probability of levee system. The proposed model is used to evaluate the effects of the freeboard and flood-diversion channel on the flood-control ability of the levees in the Keelung River, which were designed based on the 3-day, 200-year design rainfall event. The numerical experiments indicate that the hydrologic uncertainty factors have more effect on the estimated maximum water level than hydraulic and geomorphologic uncertainty factors. In addition, the freeboard and the flood-diversion channel can effectively reduce the overtopping probability so as to significantly enhance the flood-control capacity of the levee system in the Keelung River. Eventually, the proposed risk analysis successfully quantifies the overtopping risk of the levee system under a scenario, the increase in the average 200-year rainfall amount due to climate change, and the results could be useful when planning to upgrade the existing levee system. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Shiang-Jen Wu & Jinn-Chuang Yang & Yeou-Koung Tung, 2011. "Risk analysis for flood-control structure under consideration of uncertainties in design flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 117-140, July.
  • Handle: RePEc:spr:nathaz:v:58:y:2011:i:1:p:117-140
    DOI: 10.1007/s11069-010-9653-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9653-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9653-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song-Yue Yang & Che-Hao Chang & Chih-Tsung Hsu & Shiang-Jen Wu, 2022. "Variation of uncertainty of drainage density in flood hazard mapping assessment with coupled 1D–2D hydrodynamics model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2297-2315, April.
    2. Elham Jokar & Ali Arman & Arash Azari, 2021. "Forecast and risk analysis of floodplain regarding uncertainty factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1125-1148, June.
    3. Ahmet Ozan Celik & Volkan Kiricci & Canberk Insel, 2017. "Reassessment of the flood damage at a river diversion hydropower plant site: lessons learned from a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 833-847, March.
    4. Y. Umer & V. Jetten & J. Ettema & L. Lombardo, 2022. "Application of the WRF model rainfall product for the localized flood hazard modeling in a data-scarce environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1813-1844, March.
    5. Hsiao-Ping Wei & Yuan-Fong Su & Chao-Tzuen Cheng & Keh-Chia Yeh, 2020. "Levee Overtopping Risk Assessment under Climate Change Scenario in Kao-Ping River, Taiwan," Sustainability, MDPI, vol. 12(11), pages 1-12, June.
    6. Wei Wang & Jia Liu & Chuanzhe Li & Fuliang Yu & Yuebo Xie & Qingtai Qiu & Yufei Jiao & Guojuan Zhang, 2020. "Assessing the applicability of conceptual hydrological models for design flood estimation in small-scale watersheds of northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1135-1153, July.
    7. Shiang-Jen Wu & Chih-Tsung Hsu & Ho-Cheng Lien & Che-Hao Chang, 2015. "Modeling the effect of uncertainties in rainfall characteristics on flash flood warning based on rainfall thresholds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1677-1711, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:58:y:2011:i:1:p:117-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.